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Abstract—Radio Frequency Identification (RFID) can be used
in various ways for the optimization of supply chain management
processes. However, there are technological constraints that delay
a reliable and productive use of the technology. One of these
constraints is the problem of false-positive RFID tag reads i.e.,
tags that have been read unintentionally by an RFID reader. We
propose a machine learning based approach that makes use of
the low-level reader data collected when reading tags to detect
such false-positives. We evaluate our approach by verifying it
with data collected in a productive RFID enabled distribution
center, where it is necessary to distinguish between pallets that are
loaded onto trucks and pallets that are in range of the reader by
accident only. Furthermore, we identify several attributes which
are expected to reveal characteristics within the low-level reader
data that is typical to such false-positive reads.

I. INTRODUCTION

Radio Frequency Identification (RFID) is a wireless com-
munication technology that can be used for the automatic
identification (Auto-ID) of physical objects. The use of the
technology is expected to grow significantly in the next years
and it is predicted that someday RFID tags will be as pervasive
as bar codes [1]. It can be used in various ways for the
optimization of supply chain management and especially for
the optimization of processes in distribution centers [2], [3].

The long-term objective is the automatic identification,
tracing and verification of goods along their way from the pro-
ducer to the customer. Prerequisite for such an all-embracing
RFID process is that the producer, as the starting point of
the supply chain, attaches RFID tags to all his products. This
would allow the unique identification of every single product
from production to consumption. The Pros and Cons of RFID
in the supply chain are discussed in [4].

One of the key processes in many supply chains is the
shipping from distribution centers where a highly efficient
warehouse management is essential to ensure a smooth flow
of goods to the stores. If using a bar code solution, a
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Fig. 1. RFID Portal. Source: METRO Group

warehouseman has to manually scan each pallet which is
time consuming and error prone. In contrast, shipment dock
doors equipped with RFID portals can automatically register
all goods leaving the warehouse by identifying the transponder
attached to the pallet. The data is then transmitted to the ware-
house management system and faulty deliveries are recognized
immediately [5]. The business value of RFID data in various
industrial settings is discussed for example in [6] and [7].

Figure 1 shows the main components of such an RFID
portal. It is installed right in front of the shipment dock door
so that every pallet entering or leaving the truck unavoidably
passes through it. In the case of outgoing goods, a warehouse-
man approaches the truck with an RFID tagged pallet (7) on
his forklift in order to load it onto the truck. This is recognized
by the motion sensor (4) which then signals the RFID reader
(1) to activate its antennas (5) and detect any transponder in
range. The data gathering of the reader runs for a period of
about 5 seconds and is called a gathering-cycle. After the end
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of the gathering-cycle the warehouseman requires immediate
feedback about the loading in order to correct any mistakes.
This is done by the use of a color signal light (3) installed at
the portal.

• If the pallet1 has been recognized correctly and the
warehouse management system (WMS) confirms that it
is actually meant for the destination of the container the
light flashes green.

There are occurrences of faulty deliveries that at this point are
automatically detected and can immediately be dealt with.

• In the case that the pallet was not intended for the
destination market the signal flashes yellow and the
warehouseman has to unload it again and continues with
another pallet.

• If the pallet is unknown to the warehouse management
system the light flashes red. This might happen for
various reasons such as incorrect tag registrations to the
WMS.

• In some cases it might happen that no tags are recognized
by the reader. In this case the signal light does not flash
at all, telling the warehouseman that he has to reload the
pallet by passing through the portal with it again.

Using this procedure, the number of faulty deliveries, i.e.,
pallets that are shipped to the wrong market, is expected to be
minimized.

However, the use of Radio Frequency Identification to
support outgoing goods yields the same problem as many other
RFID applications as they are all limited by technological
constraints. Since the antennas are not directed and have a
read range of several meters, they do not only recognize the
pallet moving through the portal but also any other in range.
The problem is that one cannot distinguish between the pallet
that was loaded onto the truck and the ones that just appear in
the reading field by accident. The reasons why other pallets
are detected by the RFID reader are manifold:

• Someone might have buffered another pallet temporarily
near the portal.

• Another warehouseman is just passing by the portal with
another pallet at the moment of data gathering.

• A pallet is loaded at an adjacent RFID portal.
If all the detected pallets are reported to the warehouse
management system as being shipped, this would lead to
incorrect invoices and stores are going to pay for goods that
they have not received. In the following the pallet that was
loaded onto the truck during a gathering-cycle is called a
moved pallet, the ones that have been read by accident are
called static pallets, or moved and static tags respectively.

The above problem, generally referred to as the problem
of false-positive RFID tag reads, can be observed in many
practical applications and is described in many book dealing
with RFID-Technology [8], [9], [10], [11].

A positive read represents a transponder that is present in
the reading field and is detected by the reader. A negative read

1The terms pallet and tag will be used interchangeably throughout the paper

represents a transponder present in the reading field that is not
detected by the reader, for whatever reason. Consequently a
false-positive read is a tag that has been detected by the reader
but is not the one of interest. Referring to the above scenario
of outgoing goods, the false-positive reads during a gathering-
cycle correspond to the pallets that stand around a portal and
are not the ones being currently loaded onto the truck. As
long as this problem remains unsolved a reliable productive
use of the RFID technology in distribution center processes
like incoming or outgoing goods is rather questionable.

The paper is organized as follows. Chapter II discusses
available approaches that have been proposed and how we con-
tribute to them. The general idea of detecting false-positives is
demonstrated in Chapter III using samples of low-level reader
data. Chapter IV explains how the data was collected in a real
world productive system for the verification of our approach.
The actual approach is introduced in Chapter V followed by
the results and an outlook on future work in this direction.

II. RELATED WORK

A. Literature Review

The detection of false positive RFID tag reads is a complex
challenge to the technology in many applications as stated for
example in [9] and [11]. As of today, only few approaches
were presented in the literature to deal with this problem but
they often consider it together with the occurrence of false-
negative tag reads, for example in [12]. In contrast to false-
positive RFID tag reads false-negatives are tags that should
be read but can’t for whatever reason. In the above scenario
of RFID enabled outgoing goods the latter are pallets that
have not been read although they were loaded onto trucks
during that gathering-cycle. Several authors have discussed
requirements and design alternatives for the implementation
of specialized RFID middleware components to handle large
amounts of raw data collected from distributed RFID readers
(e.g., [13], [14]).

In [15] and [16], a sliding window approach is used to filter
the RFID data stream. If a tag is read less often than a given
threshold during the sliding time window it is considered be a
false-positive. Because individual tags are filtered out on the
low-level reader level this might lead to an increasing number
of false-negatives. Thus, a balance has to be found between
the readability of tags and the detection of false positives as
studied in [17].

The use of additional hardware is proposed in [18] and [19].
The authors propose to determine the presence or absence of
tagged objects at arbitrary locations in the supply chain. For
this purpose 2 readers (i.e., one additional) are installed at each
read point. If a tag is read at both readers then it is classified as
present and absent if none of the readers recognized it. If only
one of the readers reads the tag, a sliding window approach
is used to determine the presence or absence of the tag. An
advanced approach makes use of an additional tag attached to
the object that has to be read by the readers as well.



B. Research Gap

The available approaches can be divided into two different
groups. The first one examines the timestamps of the individ-
ual tag reads and classifies tags using rules like the less often
a tag has been read the more likely it is to be a false-positive.
The second group uses multiple readers and rules like if two
different readers have read the tag it is unlikely to be a false-
positive.

First of all, there is more information available from the
reader than solely the timestamps of the individual tag reads.
For each tag read also the signal strength of the tag answer and
the particular antenna where the read occurred is accessible.
Note that there is a difference between reader and antenna,
since a reader can use multiple antennas. A detailed overview
of the available data is given in Chapter IV.

Secondly, the attempt to simply use more than one reader
appears rather simplistic and crude. Furthermore, this approach
entails additional costs and hence is often not a valid option.

All approaches have in common that they make unrealistic
assumptions since the data basis used (if any) is obtained under
lab conditions. A generalization of the results is consequently
questionable. Eventually none of the approaches covers a real-
world scenario comparable to ours. This paper focuses on
avoiding the shortcomings of prior research by using the full
range of information available from the reader. Additionally,
an extensive dataset obtained from a real life productive system
is used to ensure a high degree of generalization.

III. FROM LOW-LEVEL READER DATA TO DETECTION OF
MOVEMENT

During a gathering-cycle (i.e., the loading of a pallet) each
tag that is in range of the antennas responds several times
by reporting its Electronic Product Code (EPC) to the RFID
reader. On the reader side additional information about each
individual tag answer (in the following called tag event) is
available that could possibly be used to tell moved and static
pallets apart. Strictly speaking, a tag event can be interpreted
as a tuple of the following form:

tagEvent = (EPC,RSSI, SinceStart, Antenna)

A. Information in the Low-Level Reader Data

During each gathering-cycle the individual tags that were
read usually give multiple answers. Consequently, each tag
can be described by a list of temporally ordered tag events.
The meaning of the information contained in a single tag event
is described in the following.

1) EPC: The Electronic Product Code (EPC) is an iden-
tification scheme for the universal identification of physical
objects via RFID tags and other means. An EPC construct
consists of an object class identification and a serial number
used to uniquely identify the instance of the pallet along with
some other information [20].
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Fig. 2. Best-case gathering-cycle

2) RSSI: The Received Signal Strength Indication (RSSI),
measured in dBm, is a measurement of the power of the
received radio signal the tag emits and can intuitively be
interpreted as how loud the tag has been heard by the antennas.
By nature the RSSI value becomes higher the closer a tag is
to the antennas and lowers the further away it is.

3) SinceStart: For each tag event a timestamp is stored. It
is relative to the time that has passed since the beginning of the
gathering-cycle and is measured in microseconds. Since each
gathering-cycle runs for 5 seconds only this is the theoretical
maximum although the vast majority of the tag events can be
observed within the first 3.5 seconds after the beginning of the
pallet loading.

4) Antenna: Each RFID reader has a number of antennas
attached to it that try to read all tags in range. The information
at which antenna the tag event occurred is stored as an integer.
In our setting, each reader is equipped with 4 antennas, so the
numbers stored range from 1 to 4.

B. Best Case

An example of the tag events that occurred during the first
3.5 seconds of a gathering-cycle is shown in Figure 2. In this
case, there were two pallets present in the reading field of
the antennas, pallet A was the one that moved through the
RFID portal and pallet B was one placed nearby. On the y-
axis the RSSI values are depicted, on the x-axis the timestamp
of the tag event. Not shown in the figure are the antennas at
which the individual tag events occurred. It can be observed
that the static pallet shows more or less constant RSSI values,
which is understandable since it does not change its distance
to the antennas. The moved pallet however shows an increase
of RSSI values after 500ms, reaching the maximum at around
1250ms, and then decreasing again. This is an indication of
a pallet approaching the antennas, passing them and finally
moving away from them.

C. Normal Case

In most cases it is not that easy to tell moved and static
pallets apart. Figure 3 shows 4 examples of gathering-cycles
randomly chosen from our sample data where different effects
can be observed. Figure 3a shows a moved pallet that has
been read only within the first 0.5 seconds with RSSI values
dropping from -40dBm to -50dBm. The static pallet has a
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Fig. 3. Sample gathering-cycles

lot of variety within the first 1.5 seconds and then shows a
constant RSSI value level. Figure 3b shows 3 pallets with
only a few tag reads from each tag. While the moved pallet
has been read only over a very short period of time (around
0.2 seconds) the static pallets appear to be in range of the
antennas between 2 and 3 seconds. Figure 3c shows a moved
pallet that has been read over a period of 3 seconds with more
or less constant RSSI values and a static pallet that shows
the moved-tag-like bump at the middle of the gathering-cycle.
Figure 3d shows another gathering-cycle where 3 tags have
been read. All of them have been read over a period of several
seconds with similar RSSI values. These example gathering-
cycles demonstrate how difficult it is in the normal case to
identify which pallet has actually been loaded onto the truck
and which ones are false-positives.

D. Tag Characteristics
The next step is to identify certain characteristics derived

from the low-level reader data that can be considered as typical
for a moved or a static tag. Once these characteristics are
available it would be possible to determine which pallets have
been moved or not. Based on the domain knowledge acquired
after observing hundreds of pallet loadings the following
characteristics, in the following called attributes (Table I, II
and III), were identified. They are aggregations of the set of
all tag events for a specific tag. So for example the minimum
RSSI value of a tag is the minimum RSSI value of all tag
events associated with that tag.

1) RSSI Attributes: The RSSI values depend on the distance
between tag and reader. Higher RSSI values indicate that a

TABLE I
EXPLANATION OF RSSI ATTRIBUTES

Attribute Name Description

RSSI MIN The minimum of all RSSI values
RSSI MAX The maximum of all RSSI values
RSSI DIFF The RSSI value range (RSSI MAX - RSSI MIN)
RSSI MEAN The average of all RSSI values
RSSI STDDEV The standard deviation of all RSSI values

TABLE II
EXPLANATION OF SINCESTART ATTRIBUTES

Attribute Name Description

SINCESTART MIN The time passed before the first tag event
SINCESTART MAX The time passed before the last tag event
SINCESTART DIFF The time period during which a tag has been read

pallet was close to the antenna when read and lower RSSI
values indicate that a pallet was further away from the antenna.

2) SinceStart Attributes: It is reasonable to consider the
time that has passed since the beginning of the gathering-
cycle to find out whether moved and static tags are read at
different timestamps. The following knowledge derived from
the low-level reader data can be examined.

3) Antenna Attributes: The tags are usually attached to the
same side of the pallet. Thus, it is interesting to find out if
certain antennas are more likely to read either moved or static
tags.



TABLE III
EXPLANATION OF ANTENNA ATTRIBUTES

Attribute Name Description

ANT1 CNT,...,ANT4 CNT Number of reads by the respective antenna
CNT The sum of all antenna tag reads

IV. DATA COLLECTION

In order to analyze the various attributes, a dataset contain-
ing a large number of tag events for both moved and static
pallets is required. The data collection took place in the central
distribution center of METRO Group Cash & Carry markets in
Unna, Germany. METRO Group is one of the largest retailers
in the world and currently one of the key players in RFID
adoption along the supply chain. In the distribution center
all of the 70 shipment dock doors were equipped with RFID
portals to automatically detect pallet shipments. Over a period
of 7 months students were assigned to monitor the loading of
pallets. They kept track of which pallets that have been read
during a gathering-cycle were actually moved and which were
static. This was done using custom developed software that
immediately after the ending of a gathering-cycle shows them
a list of all pallets scanned. The students now simply mark
each of them as either moved or static. All observations were
made at any of the 70 shipment dock doors without having
an impact on the warehousemen or their way of working.
During the 7 months of data collection 53,998 pallets have
been monitored, where 40,743 of them were static and 13,245
were moved through the outgoing goods portal. This dataset,
collected in a productive real world scenario, constitutes the
foundation for the research and allows for a much better
insight than any simulation under lab conditions.

V. ALGORITHM OF OUR APPROACH

The general idea is that moved and static tags are expected
to show a different behavior with respect to the previously
defined characteristics (i.e., attributes) based on the low-level
reader data.

A. Different Tag Distributions

Figure 4a exemplarily shows the distribution of the standard
deviation of the RSSI values for both tag types based on the
data that was collected at the METRO Group distribution
center. The y-axis depicts the number of tags that had a
specific standard deviation during a gathering-cycle. The key
information in this figure is that the received signal strength
indication of moved tags is most likely to have a standard
deviation between 4 and 8. The static tags, i.e., the false-
positives, are likely to have a standard deviation between 0
and 3. The reason for this different behavior is that moved
tags have by definition a significant change in distance to the
antennas during the gathering-cycle in contrast to the static
tags. Therefore the variation of the RSSI values is accordingly
higher. Another import information in this histogram is the
remarkable number of static tags having a standard deviation
of RSSI values of 0 (other than depicted this corresponds to

even more than 9000 static tags and not only 3000, this was
done for presentation purposes only). This is because it has
turned out that a large number of static tags responded only
a single time to the reader thus having a standard deviation
of 0.

An example of an attribute that doesn’t show such a mean-
ingful distribution is given in Figure 4b. Depicted is the time
that has passed since the start of the gathering-cycle until the
tags gave their first answer to the RFID reader. Similar to the
above example of the RSSI standard deviation, the number of
tags that answered within the first 0.4 seconds is significantly
higher but has been cut down for presentation purposes. It
can be seen directly that both moved and static tags usually
answer within the first second. However, in contrast to the
average RSSI value, there is no clear distinction between the
two distributions that could help determine their tag class, as
the ratio of moved and static tags is about the same for all
buckets in the histogram.

B. Determining the Optimal Threshold Value

Given an attribute as shown in Figure 4a that allows to
perform a useful classification, we now have to determine
the optimal threshold value to separate the two distributions.
For our running example, Figure 5 shows the distribution
of the average RSSI values for static and moved tags is
depicted. The key information in this figure is similar as in
Figure 4a, i.e., moved tags usually have a significantly higher
average RSSI value than static tags. But additionally a graph
representing the information gain [21] (also called Kullback-
Leibler divergence) is depicted. It can be interpreted as a
measure of how well the two tag types can be separated using
a specific value as threshold and is a common method in
machine learning [22]. Illustrated below is how we use the
information gain obtained for specific values to determine the
optimal threshold that separates moved tags from the false-
positives.

Generally, the entropy H is a measurement of the informa-
tion associated with a dataset D and is defined as

H(D) = −
n∑

i=1

p(i) log2 p(i)

where p(i) is the probability that an object in the dataset is
of class i. We have two different classes in our scenario with
75.8% static and 24.2% moved tags. Thus, the entropy of our
dataset equals

H(D) = −(0.758 log2 0.758 + 0.242 log2 0.242) = 0.798.

Let A be an attribute and x a threshold under consideration.
Then D≤ is the set containing all tags having a value for
attribute A less than or equal x and D≥ is the set of all tags
with an attribute value greater than x:

D≤(A, x) := {Tag ∈ D|Tag(A) ≤ x}

D≥(A, x) := {Tag ∈ D|Tag(A) ≥ x}
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The information gain I obtained by splitting attribute A on
x is then defined as

I(A, x) = H(D)− (
|D≤(A, x)|

|D| ·H(D≤(A, x))

+
|D≥(A, x)|

|D| ·H(D≥(A, x))).

The optimal threshold o to separate moved and static tags
is the one where the information gain maximizes, i.e.,

o = max
x∈X

{I(A, x)}.

If there would be a perfect attribute, i.e., one with a
threshold value perfectly splitting static and moved tags, the
maximum information gain of the attribute is equal to the
entropy of the dataset, 0.798.

Figure 5 shows the information gain calculated for all
possible split points using the average RSSI value as an



TABLE IV
RSSI ATTRIBUTE CLASSIFICATION RESULTS

Attribute Name Class Recall Class Precision Overall
Static Moved Static Moved

RSSI MIN 100.00% 0.00% 75.47% 0.00% 75.47%
RSSI MAX 96.60% 92.88% 97.66% 89.89% 95.69%
RSSI DIFF 96.69% 85.53% 95.36% 89.35% 93.95%
RSSI MEAN 91.29% 91.42% 97.03% 77.33% 91.32%
RSSI STDDEV 97.01% 87.64% 96.02% 90.49% 94.71%

attribute. As intuitively expected, the split point is located near
the intersection of the two distributions (at -58.1dBm) having
an information gain of 0.440.

The algorithm to decide whether a pallet has been moved
or not based on the average RSSI value is now as simple as
follows. For every tag that has been read during a gathering-
cycle we calculate the average RSSI value. If this value is less
than -58.1dBm then we assume it to be a static (i.e., a false-
positive) tag otherwise we assume it has been loaded onto
the truck. The feedback for the warehouseman via the signal
light can now be altered accordingly. If he moves through
the portal and no moved pallet was detected by the reader the
lights flashes red telling the warehouseman to repeat the pallet
loading. A different signal can be given when more than one
tag was classified as moved (sometimes a pallet has more than
one tag attached to it).

VI. RESULTS

Using the information gain approach presented above, the
optimal threshold to separate moved and static tags is calcu-
lated for all considered attributes. The quality of an attribute
is primarily measured by the overall classification rate CALL

which is defined as

CALL :=
Number of Tags correctly classified

Number of Tags
,

thus corresponding to the percentage of correctly classified
tags. Additionally, two more quality measures commonly used
in machine learning, namely class recall R and class precision
P , are calculated as well. The class recall tells us how many
tags of a specific class have been classified correctly and the
class precision indicates how many of the classifications of a
specific class are actually correct.

RStatic :=
Number of Tags correctly classified as Static

Number of Static Tags

PStatic :=
Number of Tags correctly classified as Static

Number of Tags classified as Static

Calculation of class recall and class precision for moved
tags is done analogously. Tables IV-VI present class recall
and class precision for both static and moved tags as well as
the overall classification rate is presented that was achieved
after splitting on the pre calculated optimal threshold.

TABLE V
SINCESTART ATTRIBUTE CLASSIFICATION RESULTS

Attribute Name Class Recall Class Precision Overall
Static Moved Static Moved

SStart MIN 100.00% 0.00% 75.47% 0.00% 75.47%
SStart MAX 100.00% 0.00% 75.47% 0.00% 75.47%
SStart DIFF 100.00% 0.00% 75.47% 0.00% 75.47%

TABLE VI
ANTENNA ATTRIBUTE CLASSIFICATION RESULTS

Attribute Name Class Recall Class Precision Overall
Static Moved Static Moved

CNT 100.00% 0.00% 75.47% 0.00% 75.47%
ANT1 CNT 79.56% 75.74% 90.98% 54.64% 78.62%
ANT2 CNT 80.32% 67.86% 88.49% 52.84% 77.26%
ANT3 CNT 100.00% 0.00% 75.47% 0.00% 75.47%
ANT4 CNT 100.00% 0.00% 75.47% 0.00% 75.47%

A. RSSI Attributes

The minimum RSSI value does not carry any information
that could be used to detect false-positives. Because no useful
split point could be identified there is no other possibility than
classifying all tags as static which results in a classification
rate of only 75%. The other RSSI attributes appear to be a
lot more useful as they are all able to classify more than
90% of all tags correctly. The maximum RSSI value yields
the best results with an overall classification rate of almost
96%. The RSSI value range and the standard deviation perform
quite similar, only the average RSSI value performs notably
worse. These results can be explained by the assumption made
above, namely that tags moving through the RFID portal have
a significant change in distance to the antennas. Static tags on
the other hand are assumed to stand still and have not much
variation in their RSSI values.

B. SinceStart Attributes

As can be seen from Table V, all attributes that are based
on the relative timestamps of the individual tag events (Table
V) have a class recall and class precision for moved tags of
0% and allow no differentiation of the tag types at all as can
be seen in Figure 4a. Consequently all tags are classified as
static, as there is a 75% chance that a tag is static based on
the static / moved ratio.

C. Antenna Attributes

Similar to the attributes based on the timestamps, the an-
tenna attributes do not appear to be helpful for distinguishing
between moved and static tags. However, it is notable that
there are two different antennas, namely antenna 1 and antenna
2 that have a slightly higher overall classification rate than the
others. This is due to the fact that they can be used to identify
a couple of moved tags.



VII. SUMMARY & FUTURE WORK

We have shown that it is possible to detect false-positive
RFID tags in distribution center processes by the use of the
low-level reader data. This is possible because moved and non-
moved tags show different characteristics with respect to the 3
introduced data dimensions received signal strength indication
(RSSI), timestamp of the individual tag events and number of
reads per antenna. We generated various aggregated attributes
based on the low-level reader data that we expected to be
suitable for the discrimination of static and moved tags. In
the scenario we presented, those static tags were attached to
pallets located in the range of an RFID enabled outgoing goods
portal and are considered to be false-positives. Our algorithm
that uses the information gain criterion to tell static and moved
pallets apart was able to classify more than 95.5% of the real
world data correctly. Furthermore it was shown that the RSSI
values, which can be interpreted as a measure of how loud
a tag has been read by a reader, are the most suitable tag
characteristics for this task.

Using the algorithm framework presented above it is now
possible to identify the loaded pallet just after the data gath-
ering has finished. In contrast to the process of RFID enabled
outgoing goods used before, this yields a much more reliable
loading process as false-positives are detected immediately and
faulty deliveries are minimized.

There are basically two different fields of interest we are
going to concentrate our attention on in the future.

• Advanced algorithms: The proposed algorithm relies on
the examination of a single attribute value. It is reasonable
to take additional attributes into account to identify pos-
sible relationships between different attributes. A more
advanced machine learning approach is probably going
to result in an even better classification performance than
presented above.

• Alternative application scenarios: The data used above
was acquired by monitoring the loading of pallets at
RFID enabled outgoing goods in a distribution center.
However, there are various applications that deal with
the same problem of false-positive tag reads. In the case
of electronic article surveillance (EAS) there is a need to
identify tagged articles that have been stolen by a theft the
moment he leaves the store by passing through an EAS
portal. The same applies to an automatic point of sale
where articles are automatically charged to the customer
when leaving the store.
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