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Abstract

The notion of the “Internet of Things” (IoT) describes the vision of ubiquitous sensor technolo-

gies that seamlessly link arbitrary physical objects to their digital counterparts in the network.

In recent years, it was particularly the rapid diffusion of Radio Frequency Identification (RFID)

in supply chain and distribution center processes that has contributed to the emergence and

popularity of the IoT concept. However, technological constraints currently delay fully reliable

and productive use of the technology. One major constraint is the problem of false-positive

RFID tag reads, i.e., when an RFID transponder is read unintentionally by an RFID reader.

This problem is studied in the context of RFID enabled outgoing goods processing at a

distribution center in Unna, Germany. The RFID installation in this METRO Group center

was part of the largest operational rollout of the technology in the European retail sector. In the

examined scenario it is necessary to distinguish between tracked RFID tagged pallets that are

loaded onto trucks and other pallets that are also in range of the reader. If all detected pallets

are reported to the warehouse management system as being shipped, the resulting incorrect

invoices mean stores have to pay for goods that they neither ordered nor received. It is evident,

therefore, that a solution to this problem is a must before a reliable and productive use of RFID

technology in distribution center processes is feasible.

Currently, the few conceptual approaches presented in the literature that deal with this

problem suffer from fundamental weaknesses. This thesis addresses those weaknesses by means

of a machine learning based approach that makes use of the low-level reader data collected

when scanning for transponders. For this purpose, meaningful attributes have been identified

that help describe characteristics specific to pallets that have been loaded and to pallets that

cause false-positives.

This approach was able to minimize the number of possible incorrect shipments to only 1

per 4,500 pallet loadings - a solution that clearly exceeded METRO Group’s expectations.



Zusammenfassung

Der Begriff “Internet der Dinge” (IoT) beschreibt die Vision von allgegenwärtigen Sensortech-

nologien, welche beliebige physikalische Objekte nahtlos mit ihrem digitalen Ebenbild verknüpfen.

Insbesondere die wachsende Verbreitung der Radio Frequenz Identifikation (RFID) im Bereich

des Lieferketten- und Warenhausmanagements hat während der letzten Jahre zur Entstehung

und wachsenden Popularität des IoT Konzeptes beigetragen. Leider steht derzeit einer vollfunk-

tionstüchtigen und produktiven Nutzung der Technologie noch eine Reihe von technologischen

Einschränkungen im Wege. Eine der bedeutendsten ist das Problem der falsch-positiven Tag

Lesungen, also der unerwarteten und unerwünschten Erkennung von RFID Tags durch ein

RFID Lesegerät.

Diese Problem wird hier im Zusammenhang mit einem RFID gestützten Warenausgang in

einem Zentrallager in Unna, Deutschland, untersucht. Die Installation in diesem Lager der

METRO Group war Teil der bis dahin grössten und umfangreichsten Einführung der RFID

Technologie auf dem europäischen Kontinent. Im untersuchten Szenario ist es von besonderer

Bedeutung zu unterscheiden, ob die RFID getaggten Paletten, welche an den Warenausgang-

storen erkannt wurden, auch wirklich in diesem Moment verladen wurden, oder ob es sich

lediglich um Paletten handelt, die nur zufällig im Scanbereich des RFID Lesegerätes abgestellt

oder bewegt wurden. Falls wirklich alle erkannten Paletten dem Lagerverwaltungssystem als

verladen und verschickt gemeldet würden, hätte dies falsche Rechnungen zur Folge und Kunden

sollten für Paletten bezahlen die sie weder bestellt, noch jemals erhalten haben. Es ist offen-

sichtlich, dass hier Abhilfe geschaffen werden muss, um einen zuverlässigen und produktiven

Einsatz der RFID Technologie im Warenlager zu gewährleisten.

Die wenigen bisher veröffentlichten konzeptionellen Lösungsansätze leiden alle unter einer

Reihe von fundamentalen Schwächen, die in dieser Dissertation vermieden werden. Auf Ba-

sis verschiedener Methoden des maschinellen Lernens wird ein Algorithmus entwickelt, der die

während einer Verladung gesammelten Low-Level Daten untersucht und dann entscheidet, ob

die Palette wirklich verladen wurde oder nicht. Zu diesem Zweck wurde eine Reihe von be-

deutsamen Eigenschaften dieser Daten ermittelt, die die Identifizierung von falsch-positiven

Lesungen überhaupt erst ermöglichen.

Der präsentierte Ansatz ist in der Lage, die Anzahl der möglicherweise inkorrekten Verladun-

gen auf ein Minimum zu reduzieren, welches die Erwartungen der METRO Group bei weitem

übertroffen hat.
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1. Introduction

1.1. The Internet of Things

A plethora of novel terms including ubiquitous computing [Wei91], pervasive computing [Sat01]

and things that think [Ger99] abound these days that herald the appearance of a new paradigm

shift in information processing. Common to all of these concepts is the shared vision of a future

world of everyday physical objects and places equipped with digital logic, sensors, and network-

ing capabilities, forming what is commonly called the Internet of Things (IoT) [Ash09]. The

sheer number of IoT devices is expected to surpass the current internet infrastructure (compris-

ing servers, personal computers, and mobile phones) by orders of magnitude [CPB+05]. The

drivers behind the ongoing trend towards this vision include the miniaturization of microelec-

tronic components, standardization, and price decline, as well as the various new technologies

reaching mass-market maturity (for example, in the area of polymer electronics, energy har-

vesting, or wireless networks) [MF10]. In recent years, the rapid diffusion of Radio Frequency

Identification (RFID) in an ever-broader range of application areas has, in particular, con-

tributed to the emergence and popularity of the concept [SBA00, TFH+09].

From a management perspective, the appeal of the IoT vision is grounded in the hope of clos-

ing the gap between real-world entities and their digital counterparts in the network, ultimately

leading to a state of real world awareness [Hei05] of enterprise information systems. Today, the

divide between the physical and the digital world is still bridged by manual (e.g., keystrokes)

or semi-automatic (e.g., bar code scans) input. In contrast, ubiquitous wireless sensor tech-

nologies can provide firms with a continuous stream of fine-granular and timely information on

the physical operations, both within the organization and beyond [AL05]. RFID technology

specifically offers the benefit of supply chain visibility [LO07], which can be expected to reduce

inventory holding costs, decrease lead times, improve service levels, and protect customers from

counterfeits [BP05, MSW08, Ang05, AM05, BP05, KH02, Sri04]. However, despite the strong

interest in the value of RFID for academia and in practice, little research has been performed

to identify the necessary procedures to derive meaningful information on business processes

from large amounts of raw RFID data. In fact, the vast majority of recent RFID deployments
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have been limited to mere process automation, leaving the utilization of the collected data for

analytical purposes as a widely untapped application [TAKF09].

1.2. RFID Technology

In recent years, the application of Radio Frequency Identification (RFID) technology in sup-

ply chain management has attracted the interest of several industries worldwide [Wyl06]. This

development has been strongly driven by standardization activities, cost erosion, and the minia-

turization of microelectronic components [TFH+09, Wan04].

The availability of low-cost RFID technology today allows for wider use beyond its traditional

niche applications such as for animal tagging and access control. In logistics, RFID competes

with the omnipresent bar code in identifying arbitrary physical goods along the entire supply

chain [MV01]. Unlike bar codes RFID allows for the unique identification of individual items

and bulk readings with no line-of-sight required even under harsh environmental conditions

[Fin03].

This gives rise to opportunities to collect the kind of fine-granular, real-time information

about physical processes in the supply chain which often cannot be monitored using conven-

tional approaches. The hope among its proponents is that RFID will become the technological

enabler of an unprecedented level of supply chain visibility [LO07].

Besides its ever broader diffusion across many industries, RFID has also become a fruitful

research topic, not only in electrical engineering and computer science, but also in management

research [NMRY08]. In particular, a number of valuable models have recently been developed

in the fields of information systems and operations management that not only support designers

of RFID-based systems and processes but also explain how RFID can generate business value

in organizations. However, the majority of this prior work tends to consider RFID as a “next

generation bar code” differing only slightly from its predecessor in its enhanced precision and

the timeliness of collected data. This narrow view runs the risk of ignoring the fundamentally

different levels of data quality associated with these Auto-ID technologies.

1.2.1. Comparison to Bar Codes

By comparing the characteristics of RFID against object identification using bar codes, some

major advantages can be identified for both technologies [MS03, WGPR07]. Furthermore, a

completely new product identification scheme, the Electronic Product Code (EPC), allows for

a massively increased address space.
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1.2.1.1. Advantages of RFID

Since RFID uses radio waves, in contrast to bar codes which are optically read, no line-of-sight

is required and tags can be in any orientation and attached to an arbitrary side of the object

relative to the antenna. The read range of RFID tags is much higher and multiple tags can be

automatically read at once without any human involvement. This allows reduced processing

time as the contents of various conveyances can be scanned without opening or unloading them.

Further advantages include a greatly enhanced data storage capacity, the ability to rewrite

and program a tag, and improved robustness. In contrast to bar codes, appropriate RFID tags

can be used in harsh and dirty environments and they still work when painted over, buried in

dirt, or covered with mud and snow or if anything interferes with a clear line-of-sight [Bro07].

1.2.1.2. Advantages of Bar Codes

RFID hardware (e.g., tags and scanners) is still more expensive than the cost effective, well

understood, and mature technology of bar codes so ubiquitous throughout many supply chains.

Furthermore, bar codes are interoperable on a global level and do not require the regulated

frequencies RFID does. Their reliability and manageability is well documented and well proven

and unlike RFID tags, bar codes are not affected by materials such as metal foils or liquids.

Last but not least, bar codes usually have an alphanumeric identifier printed on them, thus

allowing a human to read them if necessary [Bro07].

1.2.1.3. The Electronic Product Code

Maybe the most important advantage of RFID over the traditional bar code is the ability to

uniquely identify every single product along with the product class. With this in mind, a new

identification scheme for products, the Electronic Product Code (EPC) created by the Auto-ID

center, has become one of the dominant RFID standards. The Auto-ID center was established

in 1999 as a research group consisting of seven leading universities and aimed to develop a

“low-cost, open standard RFID infrastructure for Supply Chain Management” [Sri04].

An EPC contains an 8-bit header identifying the EPC version and three sets of information:

EPC Manager, Object Class and Serial Number. EPC Manager is a 28-bit value representing a

specific manufacturer, the 24-bit Object Class refers to the exact product type and the 36-bit

Serial Number corresponds to a specific item of that class. An example of an EPC is shown in

Figure 1.1 which also depicts the sizes of the individual information sets.

EPC proponents envision that every product in the supply chain will be RFID tagged with its

own and unique Electronic Product Code as the virtual representation of the physical object
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EPC 

Version 

Manufacturer

> 268 Million 

Object Class

> 16 Million 

Serial Number

>68 Billion 

21 203D2A9 16E8B8 719BAE03C

Figure 1.1.: Electronic Product Code Example

it is attached to. Currently however RFID tags are still expensive and there is often little

advantage in using tags that may cost the same price as an item itself. So in practice, RFID

is often not used on the item level but rather on logistical units, for example at the case or

the pallet level [MET07c]. Case or pallet tagging though, does not deliver all of the promised

benefits of RFID [AM05].

1.3. RFID in the Supply Chain

RFID can be used in various ways for the optimization of supply chain management and

especially for the optimization of processes in distribution centers [DHS07, MM05, MET07c].

A simple retail supply chain is shown in Figure 1.2 [HT06], where producers use the raw

materials from their suppliers to create the products which are then distributed to individual

retailers where they are ultimately sold to the customer.

 

Supplier Producer Distributor Retailer Customer

Figure 1.2.: Retail Supply Chain

The long-term objective of using RFID in the supply chain is the automatic identification,

tracing, and verification of goods along their way from the supplier to the customer. The

prerequisite for such an all-embracing process is that the supplier or the producer at the starting

point of the supply chain attaches RFID tags to all of their products. This would allow the

unique identification of every single product from production to consumption, thus making it

much easier, for example, to trace the origin of contaminated food lots or to record the history

of a pharmaceutical’s buyers and sellers throughout the supply chain [HM08].

The ability to track products all the way along a supply chain provides additional insight

into two key metrics (among others): shrinkage rates (theft, damage, etc.) and lead times.
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Although RFID is not necessary to determine the amount of shrinkage (it is usually known

anyway), it does make it possible to determine exactly where and when in the supply chain

the shrinkage occurred [HM08]. Lead times can also now be precisely measured by using the

knowledge of how long it took a product to move through the supply chain and the exact time

between each of the key read points [DHS07].

1.3.1. RFID enabled Incoming & Outgoing Goods

In order to realize the promised verification and tracking of goods along the supply chain it is

necessary to integrate RFID readers at the key points where the goods need to be identified.

As can be seen in Figure 1.2 these key points are (among others) the intersections between

individual participants, i.e., when goods are handed from one participant to another. For this

purpose so-called RFID portals are installed right in front of the incoming and outgoing loading

dock doors so that every pallet arriving or leaving has to pass through them.

An example of such an RFID portal is shown in Figure 1.3. As soon as a pallet (Æ) approaches

the portal it is automatically recognized by the motion sensor (Ã) and the RFID reader (À)

immediately starts scanning for RFID tags in range of the antennas (Ä). A signal light (Â)

gives immediate feedback to the warehouseman, telling him, for example, whether a tag has

been read or not.

2

5
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1

RFID Reader
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Antennae

Mounting unit
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5

6

7

8

7

Figure 1.3.: Example of an RFID portal (Source: Metro)
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1.3.1.1. Incoming Goods Process

The goods, already tagged with RFID transponders at some preceding step in the supply chain,

are automatically detected when unloaded from a truck. As soon as the warehouseman passes

through the portal with a pallet on his forklift, the tag together with the corresponding EPC

is automatically scanned and the information about the arrival of the pallet is forwarded to

the warehouse management system. This contrasts with a bar code based system where each

pallet has to be scanned manually by the warehouseman. At this point too, any discrepancies

between the expected and the actually received goods are automatically detected.

1.3.1.2. Outgoing Goods Process

RFID also helps ease the shipping process. The warehouseman retrieves a tagged pallet from

the staging area and unloads it onto the designated truck. Again the pallet passes through the

RFID portal in front of the truck, where it is automatically scanned and the information that the

pallet with the corresponding EPC has been loaded is passed on to the warehouse management

system. After all the pallets have been loaded onto the truck a request for transportation is

sent to a shipper.

1.3.1.3. Benefits

The advantages of RFID enabled incoming and outgoing goods primarily lie in the reduced

labor for the warehousemen whose manual work is error-prone and extremely cost intensive

[MM05]. Another advantage is that incorrect incoming and outgoing deliveries are recognized

immediately and can be dealt with accordingly [MET07a].

1.3.2. Technological Constraints

Although the idea of automatic registration of incoming and outgoing goods seems straight

forward, the technology is not completely error free. Generally, the basic principles of radio

frequency waves and their limitations have a direct influence upon the readability of RFID

tags. These limitations include absorption and reflection of radio waves [JC08] that lead to

unexpected read events and ultimately to the problem of false-positive and false-negative RFID

tag reads. The impact of the surrounding environment on the readability has also been studied,

for example by [PDG06, GDHK06, DW05].
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1.3.2.1. False-Negative RFID Tag Reads

A false-negative RFID tag read is when an RFID tag in range of the antennas is not recognized

by the reader at all. This corresponds to a pallet that was moved through the RFID portal

and loaded onto the truck without being scanned. The reasons for this are manifold. For

example, the types of product on the pallet have a significant influence on the readability of

RFID tags because water and any other liquids (e.g., shampoo) absorb radio waves and thus

greatly reduce the read range [SOVT09]. Other reasons include defective or hard to read RFID

tags. To overcome this problem multiple antennas are often installed to increase the chances

of reading a tag. This however can lead to another problem, namely the mutual elimination of

radio waves due to interference effects [PKSK06].

1.3.2.2. False-Positive RFID Tag Reads

In contrast, the term false-positive RFID tag read has two different meanings. On the one

hand, the phenomenon is similar to the false-negatives because physical effects influence the

readability of the RFID tags. Any metallic material in goods or packages (for example, metal

foils and metal ink), the truck itself or anything else within the range of the antennas can

unintentionally significantly extend the read range of the antennas. As a consequence tags

assumed to be clearly out of range are unexpectedly read by the reader.

On the other hand, the term false-positive refers to tags that have been read and are clearly

present within the read range but, for whatever reason, should not be read.

1.3.3. Statement of the Problem

The problem of false-positive RFID tag reads can easily be illustrated by the scenario of an

RFID-enabled outgoing goods process. Because the portal antennas are not directional and

have a read range of several meters, not only is the pallet moving through the portal detected,

but any others in range are as well.

The problem is that readers cannot distinguish between pallets that are loaded onto trucks

and those that appear in the RF field by accident. If all detected pallets were reported to the

warehouse management system as being shipped, the resulting incorrect invoices would mean

stores have to pay for goods that they neither ordered nor received.

Furthermore, returning wrongly shipped pallets back to the sender incurs very high costs

that can often exceed the actual value of the goods. It is evident therefore that as long as this

problem remains unresolved, a reliable and productive use of RFID technology in distribution

center processes is not feasible.
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Staging Area Loading Area

M

B1

B2

L2 L1
L1

Figure 1.4.: Loading of pallets in a distribution center

Figure 1.4 depicts a distribution center with two containers and their respective RFID portals

in front of them. In this scenario, pallet M is about to be loaded into one of the containers.

Pallets B1 and B2 have been temporarily placed in the loading area by the warehouseman

and pallets L1 and L2 have already been loaded. It is expected that pallets M , B1 and B2

would be detected because they are directly within range of the antennas. However, due to

electromagnetic reflections, this range can be significantly extended meaning that pallets L1

and L2 as well as any other pallet nearby in the staging area are also recognized.

The question is, with so many pallets recognized by the reader, which of them was actually

loaded and should be billed? Scanning L1 and L2 is not that much of a problem, as they

have already been loaded into the container and are obviously assigned to the corresponding

customer. But this isn’t necessarily true for pallets B1 and B2 or any of the pallets in the

staging area. Although B1 and B2 might be intended for that specific container, it is also

possible that they are intended for the container next to it. Any pallets other than pallet M

that were read during the loading are called false-positives; either they were not expected to

be read because they were actually out of range or they were within the read range only by

accident.

This description of an RFID-enabled outgoing goods scenario leads to the understanding

that there is a fundamental difference between the tag of interest and the false-positives: the

loaded pallet has obviously been moved through the portal while any false-positive pallet has

not moved and is still somewhere in the read range of the RFID antennas. Therefore, for the

sake of simplicity, throughout the rest of this thesis the pallet that was loaded into a container

is denote a moved pallet and a false-positive read is denoted a static pallet.
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1.3.4. RFID at METRO Group

In 2007 METRO Group, the world’s third-largest retailer, started the operational roll-out of

RFID technology along its process chain. In the largest operational rollout of this technology

in the European retail sector [MET07b] 180 locations across Germany, including all METRO

Cash & Carry markets and the central distribution centers of MGL METRO Group Logistics,

dock doors for receiving were equipped with RFID portals to automatically register deliveries.

Additionally, all of the 70 shipment dock doors at the METRO Cash & Carry central distribu-

tion center in Unna, Germany, were equipped with RFID portals to automatically register any

outgoing goods.

The problem of false-positive RFID tag reads soon became apparent in the outgoing goods

process and thus METRO sought a solution as to how to differentiate between pallets that had

been loaded and other pallets stored near the portal only by accident. Because further invest-

ments in additional hardware were out of question a software-based approach was requested to

solve this problem. As all the available approaches presented in the literature were far from

being useful, a completely new approach had to be taken.

Initial considerations had led to the insight that the RFID readers at the shipment dock

doors collect a lot of data when scanning for tags and that this data could possibly be used

to approach the problem. Now, whenever a pallet approaches an outgoing goods portal it is

recognized and the RFID reader performs a transponder scan for up to 10 seconds. During this

period a tag is usually seen multiple times, reporting its Electronic Product Code to the reader

every single time. However, in addition to the EPC the following data is also stored for every

tag answer:

- A timestamp

- An integer value corresponding to the antenna that has read the tag

- The received signal strength indication (RSSI) which is a measurement of the received

signal the tag emits

Most approaches to the problem of detecting false-positive reads in the literature simply

count the number of answers during a given period to filter out unexpected or unwanted reads.

If a tag answers only sporadically and less often than expected then it is interpreted as noise

and consequently a false-positive read. However, these approaches led to only fair success and

were often only based on theoretical assumptions rather than practical experience.

Hence, it was decided in the METRO RFID project to create a completely new and practically

proven software approach to the problem of false-positive RFID tag reads. The basic idea was
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to take all of the data stored by the RFID readers into account and then to identify any patterns

or characteristics of false-positive RFID tag reads that would help to deal with this problem.

In order to generate a well founded approach a large amount of real-world data was required

to ensure universal validity, so students were assigned to monitor the loading of RFID tagged

pallets at the outgoing goods dock in the METRO Cash & Carry distribution center in Unna,

Germany. The students kept track of which pallets had actually been loaded and which were

considered to be false positives. During the months of observations more than 90,000 pallets

were monitored, with approximately 2/3 of them causing false-positives.

This data collected in a productive system allows for greater insights than any simulation

under lab conditions would, and provides the foundation for research on the detection of false

positive RFID tag reads.

1.4. Scope of the Thesis

1.4.1. Research Question

The problems stated above, paired with the unit of analysis, reveal great research potential.

On the one hand there is the real world problem of detecting and reducing false-positive RFID

tag reads which is vital to ensure a fully functional RFID enabled outgoing goods process. On

the other hand there is a unique and extensive dataset which can be used to identify patterns

in the low-level reader data specific to false-positives. With this information a software based

algorithm could be created that can immediately distinguish between pallets that have actually

been loaded and pallets that are standing within the read range of the antennas by accident.

Accordingly, the following research question shall be answered in this thesis:

How can the Low-Level Reader Data be used to detect

False-Positive RFID Tag Reads?

The aim of this thesis is to present a generalized framework to approach the problem of

false-positive RFID tag reads. The insights that eventually led to its construction are clearly

presented so that researchers and practitioners can understand and reproduce them. The

advantage of this generalized type of presentation is that the findings can easily be transferred

to other distribution centers or even other processes in the supply chain.

Furthermore, because the detection of false-positive RFID tag reads is approached by map-

ping it to the problem of movement detection, the knowledge derived from this research could

potentially be used in other related processes where RFID tags are moved. Examples of such
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processes include incoming goods, storage retrieval, electronic article surveillance (EAS) and

point of sales (POS) processes.

Consequently, the result of this thesis is a framework for utilizing the low-level reader data

to detect false-positive RFID tag reads.

1.4.2. Research Methodology

1.4.2.1. Knowledge Discovery Process

This thesis aims to develop a framework to automatically detect false-positive RFID tag reads

by distinguishing between moved and static tags. In order to avoid taking a trial-and-error

approach to answering the research question an elaborate and well structured research method-

ology is required. The process of deriving knowledge from data is commonly known as the

Knowledge Discovery Process (KDP) or Knowledge Discovery in Databases (KDD) and is de-

fined as “the non-trivial extraction of implicit, previously unknown and potentially useful in-

formation from data” [FPSM92]. In [CPSK07] the following requirements are defined for the

knowledge discovery process as a standardized process model:

- The end product must be useful for the user / owner of the data.

- A well-defined KDP model should have a logical, cohesive, well-thought-out structure and

approach that can be presented to decision-makers who may have difficulty understanding

the need, value, and mechanics behind a KDP.

- Knowledge discovery projects require a significant project management effort that needs

to be grounded in a solid framework.

- Knowledge discovery should follow the example of other engineering disciplines that al-

ready have established models.

Various process models have been proposed in the literature. One of the earliest and most

accepted is the nine-step KDD process described in [FPSS96] which has an academic origin.

In 1996 several major companies from Europe and the US including Daimler Chrysler AG and

SPSS Inc. came together, developing CRISP-DM (Cross-Industry Standard Process for Data

Mining) [CCK+00]. Since CRISP-DM has become the leading Data Mining model in industry

[CPSK07] it was therefore used as a template for the research methodology in this thesis.
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1.4.2.2. The Cross Industry Process for Data Mining

The Cross Industry Standard Process for Data Mining consists of six phases corresponding to

specific projects tasks and the relationships between these phases (see Figure 1.5).

Note that it is sometimes necessary to move back and forth between any of these phases;

however, the most important relationships are indicated by arrows. Each of the six phases is

briefly described below.

 

Business 
Understanding 

Data 
Understanding 

Data 
Preparation 

Modeling 
 

Evaluation 
 

Deployment 
 

Data 

Figure 1.5.: Phases of the CRISP-DM reference model (Based on [CCK+00])

1.4.2.2.1. Business Understanding. The first phase, business understanding, is all about

understanding from a business perspective what the client really expects from the solution.

Not spending enough time and effort on this task may result in “producing the right answers

to the wrong questions” [CCK+00]. Usually there are several constraints and requirements

on the client side that have to be considered when setting up the research plan and making

decisions, such as choosing the data mining model to be used. In order to avoid any confusion,

the common terminology used by the client and the researcher also has to be defined at this

point. Furthermore, the criteria determining the success or failure of the solution have to be

defined too.

1.4.2.2.2. Data Understanding. The second phase, data understanding, involves anything

related to an initial data overview. First of all, the available data sources have to be identified
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and an initial data collection is performed. This helps to identify and avoid in advance any

serious problems concerning the data. Furthermore, the data is examined and described on a

higher level, including obvious and distinctive features and a preliminary statistical analysis.

Finally, the quality of the data has to be evaluated, taking into account considerations like

the following: Are all cases covered? Is the data correct? Are there missing values? If any

problems are identified a solution must be worked out before moving on.

1.4.2.2.3. Data Preparation. The result of the third phase, data preparation, is going to be

the final data set (or data sets) used in the succeeding phases. Compilation of the final dataset

includes the selection of a data subset to work on and a data cleaning process. The selection

of the subset can be justified by data volume constraints or the elimination of (for this specific

data mining task) data. Often the dataset is partly incorrect or contradictory; in this case

a data cleaning procedure is performed. In addition, the generation of attributes to describe

and integrate the data is carried out and it is transformed into a suitable format by syntactic

modifications.

1.4.2.2.4. Modeling. The fourth phase, modeling, involves three different tasks. Initially, the

actual modeling technique to be used is selected (although the model selection is often already

complete after the business understanding phase). After the model selection, a test design

needs to be generated in order to evaluate the model’s quality and validity; this also includes

the definition of acceptable error rates. The next task is to actually construct the data mining

model based on the specifications and constraints from previous phases.

1.4.2.2.5. Evaluation. The fifth phase, evaluation, deals with evaluating the quality of the

model on the one hand and how far it meets the business requirements on the other hand. If

multiple models were built, they are now assessed in this phase as well. In addition, a review

is conducted of the experiences to date, to determine whether anything could be done better

in a different way.

1.4.2.2.6. Deployment. In the last phase the results of the evaluation are taken into account

and a strategy for deployment is prepared. Afterwards, the deployment has to be monitored

to identify any malfunctions and to evaluate the model in a productive environment. A final

report is usually produced, where the overall project is reviewed and possible improvements

are assessed.

13



1.4.3. Intended Audience

1.4.3.1. Practitioners

The result of this thesis is a framework that practitioners in the field of RFID can easily adopt

and examine for applicability to their specific problems. This thesis aims to formulate the

insights and findings in a general way, and not specific to the scenario under investigation, so

that individual parts of the approach can be easily considered on their own and checked for

applicability. In sum, the framework presented here holds the potential to serve practitioners

directly or indirectly by providing a complete and adaptable solution applicable to various

RFID processes.

1.4.3.2. Researchers

For researchers in the field of RFID the most interesting part of this study is probably the

underlying method followed to approach the problem of false-positive RFID tag reads. It fills

a gap in the academic literature and is entirely unique in considering the low-level reader data

as a valuable source of information rather than as dispensable junk data. The insights are not

too specific and can easily be tested for their validity in any other process where RFID tags

are moved. Hopefully this will inspire other researchers to adopt the approach and use it to

enhance their own work in this area.

1.4.4. Thesis Structure

The thesis is consistently structured according to the Cross Industry Process Model for Data

Mining. Table 1.1 shows how the chapters of this thesis are mapped to the individual phases

of the process model.

Chapter 2 gives an overview of approaches proposed in the existing literature and then

concludes with a rough evaluation of the weaknesses of these approaches that are going to be

addressed in this thesis.

Chapter 3 introduces the necessary foundations to understand the problem and how it is

approached. First, the problem of false-positive RFID tag reads is discussed from a business

perspective, describing in detail the affected processes in the distribution center, and the objec-

tives to solve this problem. Next, the problem is looked at from the data perspective and the

low-level reader data used to detect these false-positives is described and illustrated. Based on

this, two machine learning approaches are proposed and a general introduction to classification

models is given.
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Table 1.1.: Structure of the Thesis

CRISP Phase Thesis Section

- Chapter 2: Related Work

Business Understanding Chapter 3.1: Understanding Business Requirements

Data Understanding Chapter 3.2: Understanding Low-Level Reader Data

Data Preparation Chapter 4: Data Collection and Initial Analysis

Modeling Chapter 5: Classification Model Building

Evaluation Chapter 6: Model Evaluation

Deployment Chapter 6.4: Deployment

Chapter 4 describes how the data needed to train the classification model was collected, and

also introduces the three RFID portal types used in the distribution center under consideration,

along with their respective peculiarities.

Chapter 5 presents the core of the thesis, describing in detail the framework used to construct

a classification model for detecting false-positive RFID tag reads. The low-level reader data is

used on different levels of detail to construct two independent approaches, which may also be

combined into a third approach. Additionally, an advanced version of the proposed techniques

is presented, which, although it cannot be used in the underlying scenario of this thesis, is likely

to be useful in other process or scenarios dealing with similar problems.

The results of the empirical evaluation are presented in Chapter 6. In order to compare

the effectiveness of the approaches, data collected in a real world scenario was analysed. To

demonstrate a constant performance the results are also presented over a period of several

weeks. In contrast to the evaluation of the approaches presented in Chapter 2 this real world

data allows reliable and meaningful conclusions.

Finally, a summary is given in Chapter 7 including implications for the intended audience of

this thesis, i.e., researchers and practitioners.
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2. Related Work

2.1. State of the Art in RFID Research

The various issues surrounding the processing of RFID data have been the subject of a steadily

growing body of academic literature. An extensive review of this literature suggests that prior

work can be classified roughly into four categories.

First, several authors have discussed requirements and design alternatives for the implementa-

tion of specialized RFID middleware components to handle large amounts of raw data collected

from distributed RFID readers [FL05, Ye08]. A second area of interest has been the design

of algorithms for the filtering and aggregation of RFID data streams in order to derive inter-

pretable information, for example, on business events associated with RFID-equipped products

in the supply chain [JGF06, TP08b]. Third, various researchers have proposed approaches for

the efficient storage of RFID data, query languages and data structures, and other concepts

related to data retrieval and management (e.g., [BS09, MTS07]). A fourth research stream

deals with the business value of RFID data in various industrial settings [DHS07, TAKF09].

This thesis contributes to the second category by the development and evaluation of novel

filtering and aggregation mechanisms for RFID data cleansing. In particular, it considers the

phenomenon of false-positive reads, which denotes the problem of RFID readers detecting not

only selected objects of interest but also virtually any other tagged object in range. False-

positives are a well known issue in real-world implementations of RFID systems in logistics and

beyond [CKRS04, MSW08]. Currently, only a few conceptual approaches have been presented

in the literature to deal with this problem, sometimes in combination with the related issue of

false-negative or missed reads (e.g.,[BWL06, JAF+06, FL04]). In contrast to false-positives, the

latter denote objects that a reader device should detect but cannot because of electromagnetic

shielding, dysfunctional tags, or various other reasons [PDG06, GDHK06, DW05]. The few

countermeasures against occurrences of false-positive reads found in the literature are:

1. The examination of the number and / or the timestamps of tag reads.

2. The deployment of additional hardware.
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2.2. Available Approaches

2.2.1. Efficiently Filtering RFID Data Streams

Bai et al. [BWL06] proposed algorithms for RFID data filtering, including noise removal and

duplicate elimination. They identified three typical scenarios concerning the reliability of RFID

readings: false-negative reads are defined as tags which while present might not be read at all.

False-positive reads correspond to additional and unexpected reads. In addition, duplicate reads

are defined as being caused by tags in the scope of a reader for a long time (i.e., in multiple

reading frames) or because multiple readers are installed to cover a large area.

Bai et al. state that in practice readings are often performed in multiple cycles to achieve

a higher recognition rate. In this way false-negative reads are significantly reduced, unfortu-

nately at the same time false-positive reads are increased. Since these are believed to have

lower occurrences only tags with significant reads within a specific time are considered as true

reads. This in turn produces more duplicate reads. Based on these observations two types of

filtering procedures are studied. Elimination of false-positive reads can be done by denoising

or smoothing, and duplicate elimination by merging.

The false-positive elimination algorithm uses a sliding window based approach to solve the

problem. A sliding window is one with a certain size that moves over time. The algorithm

works as follows: if a tag T is read then a full scan of the preceding time window is performed;

if T appears more than a defined threshold of times within that time window, it is concluded

that it is not a false-positive so every read of T is outputted. The disadvantage of this approach

is that multiple tags might be outputted in an incorrect order, i.e., although a tag might have

been seen earlier than another one it might be determined as non-noise at a later time. Another

algorithm is presented in the paper to deal with this problem.

The approach to duplicate elimination is even simpler. The authors propose here that only

the first read should be retained, the others should be discarded. The algorithm takes only a

single input parameter maxdistance. If a reading of the same tag is within maxdistance in time

from the previous reading, this reading is considered a duplicate. Otherwise it is considered a

new read and will be outputted.

2.2.2. Efficient Object Identification with Passive RFID Tags

In [Vog02] Vogt proposed a method to reliably identify multiple tags by adapting the number

of read cycles performed, depending on the number of tags present in the reading field and the

chosen frame size. If the number of tags is high and the frame size is low, for example, then the
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percentage of identified tags will fall. The reliable identification of multiple objects is especially

challenging if many objects are present at the same time, for example in a supermarket checkout

scenario. Vogt further differentiates between two different scenarios: static and dynamic tag

set identification.

The first scenario is used to describe tags that are placed in a radio frequency field until all

of them have been correctly identified. Such a scenario might be a shopping bag full of RFID

tagged items placed near an automatic checkout counter until all items have been detected. In

contrast to that kind of self-contained process the second scenario describes a process in which

RFID tags are detected continuously without an explicit termination. Such a scenario might

be an RFID portal at the intersection between backroom and sales intended to continuously

detect any items passing through it. The author states that in the latter scenario an estimation

of the number of tags passing through and an adapting frame size is necessary to maximize the

identification rate. However, the author concentrates only on the first scenario.

In the case of the supermarket checkout the number of tags is not known in advance so it

is unclear how many read cycles have to be performed in order to scan all items. If too many

cycles are performed there might an excessively long delay and if too few are performed not

all items might be read. Consequently, the author sought an optimal value for the number of

cycles which, nevertheless, will vary with the frame size and the actual number of tags. For this

purpose an approach is presented to estimate good values for the frame size and the number of

tags present in the reading field.

2.2.3. Reasoning about Uncertainty in Location Identification with RFID

Among other scenarios, Brusey et al. [BFHF03] analyzed false-positive RFID tag reads on the

basis of a first in, first out product queue. In this scenario RFID tagged men’s shaving items,

such as razors and deodorant, are stacked on top of each other. Items are only put on top of the

stack and removed from the bottom. An RFID reader scanned the next item to be removed by

a robotic arm, i.e., the one at the bottom of the stack. The challenge was that not only was the

lowermost item scanned but also various items on top of it. These are considered false-positive

reads and need to be filtered out.

The classification procedure uses a sliding window approach supported by a weighting func-

tion. A tag is considered to be present if it has been read at least once within that time

window. The detection of false-positive reads makes use of the fact that only a single item

(i.e., the lowermost) needs to be identified. Consequently the item that has been read most

often is classified as the item at the bottom. Although this procedure yields good results it
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unnecessarily delays the removal process because after a product has been removed it takes

some time before the number of reads of the next item exceed the previous one.

This problem is resolved by introducing a weighting function that attaches greater weight to

more recent reads. Thus, the item with the greatest overall weight is identified as the lowermost.

2.2.4. Reducing False Reads in RFID Embedded Supply Chains

Tu and Pyramuthu analyzed so-called true and false readings in terms of the presence and

absence of RFID tagged objects [TP08b, TP08a]. In their theoretical scenario two readers are

used simultaneously and there are two tags expected to be present at the same time. They

proposed 3 different algorithms to reduce the read rate error for the tag of interest; these have

recently been applied to a healthcare scenario [TZP09].

The first algorithm is used as a base case to compare the results of the other two. If both

readers identify a tag as being present, then it is assumed that it is really present. In a case

where only one or neither of the readers detects the tag it is assumed that the tag is absent.

The second algorithm is similar to the first: if both readers agree that a tag is present then it

is assumed to be true; if none of them reads the tag it is assumed that it is absent. However, in

the case where only one of the readers detects the tag a sliding window approach is used. The

window size comprises 15 tag reads. For the first 15 reads it is assumed that the tag is present

with a probability of 50%. After that, the 15 immediate past reads are used to determine

presence or absence of the tag.

The third algorithm uses information about a second tag that is expected to be read at the

same time. Put simply, this means that each object is tagged with two RFID tags. The cases

where both or none of the readers recognize a tag is analogous to the first two algorithms. In

the case where only one reader detects the tag of interest, information about the other tag

is used to come to a decision. If both readers agree that the second tag is present then the

first one is assumed to be present as well. In the case where both readers disagree about the

presence of both tags, a sliding window approach is used as in algorithm 2.

2.2.5. I Sense a Disturbance in the Force: Unobtrusive Detection of

Interactions with RFID-tagged Objects

Jiang et al. analyzed false-positive reads in terms of object interaction [JFRP06]. Their ap-

proach relied on the observation that when an object is moved or rotated the distance and the

angle between reader and RFID tag change. They state that readers usually report only the

presence or absence of tags in terms of seen or not seen, and that any interaction during a
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period of presence is not going to be detected.

Consequently they use the poll command of the reader to transmit N polls per second and

then report the number of answers per tag. A response rate α is defined as the ratio of answers

to polls. If a tag has not been seen at all then α is 1, if it has always been seen then it is 0.

First observations have shown that the further away a tag is the lower the response rate α. In

this process, a suitable value for the number of polls that are to be sent is required.

However, they found that the response rate not only changes when interacting with an object,

but also if additional tags (i.e., false-positives) are in read range. One idea to deal with this

kind of problem is to use additional tags per object and multiple readers. If for example an

object has two tags attached at different sides then a rotation of the object is recognized by an

increased response rate of the first tag and a decreased response rate of the second.

2.3. Summary

This chapter gave an overview of the current approaches found in the literature. However, a

closer look at these approaches reveals substantial weaknesses that prevent their productive

use. These include, but are not limited to, the following:

- Usually there is no practical evaluation of the approaches in a real world scenario. Working

on data acquired under laboratory conditions does not give much insight into how well

the approaches will work in the real world.

- Data acquired only under lab conditions leads to very simplified assumptions.

- The approaches are very unlikely to be generalized as they are often based on a very

specific scenario and thus are not applicable to other situations.

- The use of a sliding window approach based on the number of answers per tag appears

useful at first sight but in fact there is a lot more data available from the RFID reader

data which could possibly be used to improve any of the algorithms.

- The absence of an elaborate research methodology means that the threshold values used

are almost all based on a trial-and-error approach.

- The use of additional hardware like multiple tags per object or additional readers was

proposed several times as the only sound solution to reliably identify false-positive RFID

tags. This though, leads to additional and unwanted costs.
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3. From Low-Level Reader Data to

Detection of Movement

According to the CRISP-DM research methodology a deep understanding of the problem from

both the business and data perspective is required. This is the aim of the following sections.

3.1. Understanding Business Requirements

3.1.1. Detailed Description of the RFID-enabled Outgoing Goods

Process at METRO Group

The problem of false-positive RFID tag reads was investigated using the RFID enabled out-

going goods process at the METRO distribution center in Unna, Germany. In order to fully

understand this process it is necessary to describe the type of pallets used in the distribution

center and how and when they are tagged with RFID transponders. Next, the loading of a

pallet by a warehouseman is described - similar to the way it is done in the distribution center

under consideration. Figure 3.1(a) shows the dock door for outgoing goods in the distribution

center. Figure 3.1(b) shows a single portal. In both pictures it is easy to see how close the

portals are to each other and to the staging area; this exacerbates the problem of false-positive

RFID tag reads, because it is very likely that many pallets are located in range of the antennas.

3.1.1.1. RFID Pallet Label

Attaching the RFID tags to the pallets is usually done immediately after the commissioning

by the respective warehouseman. Figure 3.2 shows an example of an RFID label used in the

distribution center, which is very similar to the GS-1 Germany recommendation for an RFID

transport label [Ger]. The reason why so much information is written on the label is that it

serves as a fall-back option, if for any reason the transponder does not work correctly.

The left side of the label is where the actual RFID transponder is located. In the header

the distribution center name (MGL Unna) with the corresponding address is written. The
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(a) (b)

Figure 3.1.: RFID Portals at Shipment Dock Doors

Serial Shipping Container Code (SSCC ) is a global unique number to identify shipping units

(e.g., pallets or containers). PID refers to the pallet ID, which is an internally used sequence

number to identify the pallet, note that it is a subset of the SSCC and it exists also in a bar

code representation. BKZ is a numerical representation referencing a specific destination, for

example a retailer or another distribution center. This is handwritten on the label by the

warehouseman who tagged the pallet. EPC is the actual Electronic Product Code that is sent

by the transponder to an RFID reader. This is just another coding scheme of the SSCC, thus

they can be transformed into one another. In the footer a bar code representation of the SSCC

is written and on the right the warehouseman can tear off a part of the label containing the

PID, which can also be used as evidence that it was loaded into a container.

3.1.1.2. Truck Loading Preprocessing

Initially, when a warehouseman starts the loading of a container, the shipment office gives him

the loading protocol containing information about the designated store and the portal number

where the corresponding truck is waiting. He then uses a computer in the shipment office to

inform the RFID software application that he is about to load pallets into the container. Next,

he moves to the portal and physically opens the dock door. This in turn powers up the motion

sensor which then begins to scan for movement in front of the RFID portal. Now the actual

loading of pallets into the container can begin.
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EPC: 31B506B4ACB2F81318000000
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Figure 3.2.: Example of an RFID tag used in the METRO Distribution Center in Unna,

Germany

3.1.1.3. Truck Loading

Usually each container can hold around 18 pallets, although this number may vary depending

on their weight and size. The task of the warehouseman is to completely fill the container by

loading pallets one by one. Up to 40 or 50 pallets designated for the market have already been

placed in the staging area directly in front of the shipment dock door so the warehouseman can

immediately start the loading process. At this point two workflows are common:

1. The warehouseman retrieves a pallet from the staging area, returns to the dock door, and

immediately places it in an appropriate spot in the trailer.

2. The warehouseman retrieves a pallet from the staging area, but instead of loading it

into the trailer he places it near the dock door. This is repeated until enough pallets

are buffered there and the warehouseman decides to load them into the container. This

is done because he needs to presort the pallets to ensure an equally balanced weight

distribution in the container.

As soon as the warehouseman approaches the RFID portal, he is recognized by the mo-

tion sensor and the RFID reader starts scanning for transponders moving through the portal.

The collected IDs of the tags, which uniquely identify the pallets, are sent to the warehouse

management system and the warehouseman gets an immediate visual feedback via the signal

light:

1. If the loaded pallet has been brought to the right truck, the light flashes green. The

loading was valid and the warehouseman may continue with the next pallet.
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2. If the pallet was not designated for that particular store, the light flashes yellow. The

warehouseman consequently unloads the pallet and continues with another one.

3. In any other scenario (e.g., if a tag is unknown to the warehouse management system),

the light flashes red.

There are two special cases that need to be considered. To ensure an unproblematic and

secure load, every pallet needs to reach a minimum height so as to minimize the waste of space

and prevent pallets falling on each other while being shipped. Consequently, two or three low-

height pallets will be stacked on top each other to reach the required height. The important

fact about these stacked pallets is that each of them has its own RFID tag attached. Under

these circumstances it is possible that more than one pallet is loaded at the same time, in which

case the visual feedback is altered as the light flashes green in a faster sequence if more than

one moved pallet was recognized.

The other special case is the so-called Mob-Ware (German: furniture products). Because it

is difficult to attach a tag to such things as a bunch of chairs or umbrellas they are dealt with

differently. These products are loaded onto the truck just like pallets, but after everything has

been loaded, the warehouseman then walks through the RFID portal with the corresponding

RFID tags in his hands and puts them in a special pocket inside the container. This way the

mob-ware is also detected automatically, because the tags moved through the portal.

Figure 3.3 shows examples of such pallets. In Figure 3.3(a) an ordinary pallet of water bottles

is depicted with a clearly visible RFID tag attached to it. Figure 3.3(b) shows a bunch of chairs,

i.e., mob-ware, on the left, and two low-height pallets stacked on top of each other on the right.

3.1.1.4. Truck Loading Postprocessing

After the container is fully loaded the warehouseman physically closes the shipment dock door

thereby also powering down the motion sensor. He then returns to the shipment office where

the RFID software application is informed that the loading process has been completed. The

corresponding invoice is issued to the designated store and a request for transportation is sent

to a shipper.

3.1.2. Determination of Business Objectives

After this description of the pallet loading process it is necessary to analyze from a business

perspective what is really expected from the solution. As previously stated, METRO group’s

central distribution center in Unna, Germany is fully equipped with RFID hardware to support
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Figure 3.3.: Example Pallets

and enable diverse warehouse processes and in particular the outgoing goods process (described

above) to automatically detect any outgoing pallet. However, false-positive RFID tag reads are

a barrier to a reliable and fully functional process because pallets actually loaded into containers

cannot be always identified correctly.

This inevitably leads to loading errors where pallets are shipped to destination markets that

neither ordered the goods nor paid for them. Returning misallocated pallets to the distribution

center is very expensive and carried out only in rare cases. The only way to avoid loading

errors in advance is if the warehouseman who processed the loading performs a manual check

to identify potential mistakes. However, this procedure is not error free and because it requires

an extensive time effort still leads to undesired costs.

It was shown in Chapter 2 that various approaches have been proposed to deal with this

problem by using additional hardware like multiple tags per pallet or multiple RFID readers at

the portals. However, in this study further investment in RFID hardware was not considered

a valid option because if possible, the solution should only make use of the existing hardware

so as to avoid additional costs.

Although here the problem of false-positive RFID tag reads is approached in the context of

an outgoing goods process, the problem exists in a multitude of processes such as electronic

article surveillance, point-of-sale processes, pallet retrieval from high-rack storage areas, and so

on. Given this, it is desirable to develop a solution that is well understood and could possibly

be transferred to other processes with similar problems.
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Summing up, from a business perspective, the following expectations of the solution have

been identified:

1. Minimize the number of loading errors

a) Minimize the number of false-positive RFID tag reads

b) Minimize the time to correct mistakes

2. Avoid any further monetary investment if possible

3. Generate knowledge to transfer the solution to other processes

3.1.3. Determination of Data Mining Goals

The determination of the data mining goals is a very important task as they have a great

influence on the data mining model chosen and on the objective success criteria. This is also

the process of mapping the business objectives to quantifiable and measurable performance

indicators. The overall data mining goal equals the goal of this thesis: namely the development

of a software based approach to automatically detect false-positive tag reads in the context of

an RFID enabled outgoing goods process.

For a start, there are probably an incredibly large number of possibilities for accomplishing

this goal using data mining techniques. Usually this number is considerably reduced because

not all data mining methods are suitable for every type of task. Suitability is predominately

determined by a method’s characteristics. The following characteristics have been identified as

most relevant by METRO Group representatives:

- Classification Accuracy

- Classification Speed

- Ability to deal with numerical and nominal attribute values

- Transparent Decision Tracking

- Reliable Classification Performance over time

Naturally classification accuracy plays a major role when selecting a data mining technique

because it is one of the key performance indicators and is directly related to the overall quality

of the classification model. However, it is difficult to compare the methods with one another
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based on this characteristic because it heavily depends on various other factors such as the

allowed input data type or the vulnerability to overfitting (see section 5.1.5).

The second important characteristic is the classification speed, especially given that time

is always crucial in distribution center processes, since the warehouseman needs immediate

feedback to correct errors the moment the loading has finished.

As will be shown in the following chapter, different input data types, i.e., numerical and

nominal attributes, are available to describe a pallet. If a classification model is only able

to deal with one of them then this automatically leads to a significant information loss. The

capability to deal with numerical and nominal attribute values is therefore an important decision

criterion.

Since one of the business objectives is also to generate knowledge and to possibly transfer

the solution to other processes, a profound understanding of why the final data mining model

does what it does is necessary. This is equivalent to the characteristic of a data mining model

to offer the capability for transparent decision tracking.

The data mining model must not only perform well based on some test data; it is essential

for a fully functioning outgoing goods process that it shows reliable performance in the future.

A significant variance in the classification performance cannot be tolerated.

Apart from classification accuracy and classification speed the identified model characteristics

are of a binary type: either a model has a capability or it does not. Accuracy and speed,

however, are usually expressed in numerical terms and hence are evaluated in a different manner.

There is no clear definition of the required classification speed, but it is known though that

the decision has to come as soon as possible and within only a few seconds. However, if, for

example, one model requires 2 seconds for the decision and another one required 3 seconds but

is significantly more accurate, then time does not matter at this magnitude. Consequently,

classification speed is transformed to a binary characteristic: fast enough or not fast enough.

This is similar to the classification accuracy. The overall goal is to minimize the number of

loading errors as they are negatively correlated to the classification accuracy (the more loading

errors, the less classification accuracy). However, this correlation is valid only to a limited

degree as can be seen from the following example:

Example (Classification Accuracy vs. Number of Loading Errors)

Suppose during the loading of a pallet the RFID reader detects 3 additional static

pallets. In the event that the classification model made a mistake by classifying

the moved pallet as static, then the warehouseman is informed by the signal light

that no loaded pallet has been detected. Consequently, he immediately reloads
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that pallet by moving it through the portal again. This time, the moved pallet is

correctly recognized as moved and the static pallets are again correctly classified

as static. Summing up these cases then: there were 8 pallets (each of the 4 pallets

was classified twice) recognized by the reader where one of them was classified

incorrectly. This means the classification accuracy equals 9/10 = 90%. However,

the mistake was detected, thus the number of loading errors is not equal to 1 but

to 0.

For this reason it is difficult to define a meaningful value for the classification accuracy. As

an orientation the observed accuracy of a manual bar-code process was chosen. Because in this

case 97% to 98% accuracy could be reached a value of > 99% was chosen for the classification

accuracy. The performance of both classification speed and classification accuracy can only be

estimated after the model has been built. A meaningful evaluation requires that the model is

already deployed and in productive use. Afterwards it can be determined whether anything

does not work the way it should. For example, if the warehousemen complain that they always

have to wait 10 seconds before the tags are classified and they regularly have to reload pallets

because they were not recognized then it is obvious that the model is neither fast enough nor

good enough.

3.2. Understanding Low-Level Reader Data

3.2.1. Data Terminology

After the detailed description of the outgoing goods process it is necessary to consider this

process from a technological perspective and to introduce the terminology required for the

upcoming chapters. The major relationships between the data terminology are shown in Figure

3.4. Note that this does not reflect the data model of the sample data but is only used for

demonstration purposes. The data model is presented in the following section.

The process of loading a container is called a session and once the warehouseman initiates

the loading of a container by using the RFID software in the shipment office a SessionID is

generated to identify any events belonging to that loading.

As soon as the warehouseman approaches the portal this is recognized by the motion sensor

and an event called Start-Motion is triggered. In case he really passed the portal, then at some

point he has to leave it again, which is also recognized by the motion sensor, leading to an event

called Stop-Motion. If no Stop-Motion event happens within 10 seconds after the Start-Motion

event, then it is triggered automatically.
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Figure 3.4.: Relationships between Data Terminology

The time period between the Start-Motion and Stop-Motion events is called a gathering-

cycle. The idea is that whenever a warehouseman approaches the portal it is expected that

he is going to load a pallet. Consequently the RFID reader uses its antennas to scan for

transponders in range. The entire data collection of a pallet loading is achieved during such

a gathering-cycle, which by definition runs for at most 10 seconds. Every event that happens

during a gathering-cycle is identified by a combination of SessionID and GatheringCycleID.

If a transponder, for example an RFID tagged pallet, is read during a gathering-cycle then

this is denoted a tag-occurrence, which is further identified by the EPC it transmitted to the

reader.

Usually, a specific transponder in range is read more often than once during a gathering-cycle.

Each of these reads or answers is called a tag-event, which is uniquely defined by a combination

of SessionID, GatheringCycleID, EPC and a SinceStart. Furthermore, for every single tag-event

the reader stores the signal strength of the tag answers (RSSI), a timestamp corresponding to

the time that has passed since the start-motion event was triggered (SinceStart) and the exact

antenna at which it occurred (Antenna).

Of these terms, gathering-cycle, tag-occurrence and tag-event are the most important and

thus described in more detail in the following section.
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3.2.2. Available Low-Level Reader Data

In this section the data model of the sample low-level reader data is explained. As previously

stated, during the data collection in a gathering-cycle a reader usually receives multiple answers

from each tag that is in range of the antennas. Depending on a number of external factors,

for example, the physical composition of the goods or the packages, the number of answers

per tag can be higher or lower. Every tag-event t in terms of the low-level reader data can be

represented as the following data tuple:

t = [SessionID, GCID, EPC, Source, SubSource, T ime, SinceStart, Antenna,RSSI]

The set of all tag-events (i.e., answers) corresponding to a specific tag T during a single

gathering-cycle G makes up a tag-occurrence. It is defined as

TagOccurrence(EPC) = {TagEvent ∈ G|TagEvent.EPC = EPC}

When examining the individual elements of the low-level reader data presented in Table

3.1 it becomes obvious that not all of them have the potential to be useful input data for a

classification model because they are not specific to the individual tags.

SessionID, GCID, EPC and Source are all required for identification purposes only. Fur-

thermore, SessionID, GCID and Source take on the same values for all tags that have been read

during a gathering-cycle and thus do not carry any tag specific information. EPC identifies the

individual tags but does not say anything about movement. Consequently, these elements of

the low-level reader data can not be used as input for a classification model. The element Time

corresponds to a global timestamp that also doesn’t have any specific information regarding

the gathering-cycle. To put it simply, it does not make any difference whether a pallet is loaded

in the morning or in the evening - the process is always the same.

However, because the rest of the elements are specific to each tag-event and thus are specific

to each tag that was read during the gathering-cycle, they might be useful when trying to

use the low-level reader data to discriminate between moved and static tags. Because of their

importance they are explained in more detail below.

SubSource The RFID readers that were used in our scenario have the ability to support four

different antennas. However, in some cases it might be useful that a portal has more than

four antennas attached to it, in which case an additional reader needs to be installed

(see section 4.2). The SubSource attribute is used to determine which reader the specific

antenna where the tag-event occurred is attached to.
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Table 3.1.: Overview of Low-Level Reader Data

Element Data Type Description

SessionID String The unique identification number for this ses-

sion.

GCID String The unique identification number for this

gathering-cycle.

EPC String The Electronic Product Code to uniquely

identify the pallet.

Source String The identifier of the RFID portal at which

the gathering-cycle took place.

SubSource String If a portal has more than one reader installed

then this the identifier of the corresponding

reader.

Time Timestamp The absolute timestamp of the tag-event in-

cluding time and data.

SinceStart Integer The time that has passed since the start of

the gathering-cycle.

Antenna Integer An integer representation of the correspond-

ing antenna at which the tag-event occurred.

RSSI Decimal The received signal strength indication.

SinceStart Each tag-event has two different timestamps assigned. The Time attribute is

an absolute timestamp with the corresponding year, month, day and exact time. The

SinceStart attribute is relative to the beginning of the gathering-cycle, since it measures

how many microseconds have passed since the pallet loading at that portal started.

Antenna Every reader in the METRO distribution center in Unna, Germany has exactly

four different antenna attached to it. Whenever a tag responds to the RFID reader

the database records which antenna received the answer in the Antenna attribute.

RSSI The Received Signal Strength Indication (RSSI) denotes the power of the tag’s radio

signal measured in dBm, which can intuitively be interpreted as how “loudly” the tag

was heard by the antenna. By nature, the RSSI value increases the closer a tag is to the

antenna and decreases the further away it is.
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3.2.3. Examples of Low-Level Reader Data

An example of the tag-events that occur during a gathering-cycle is depicted in Figure 3.5. In

this case, two pallets were present in the RF field: a moved pallet which passed through the

RFID portal and was loaded into a container; and a static pallet which was located nearby.

The data points shown in this graph correspond to the individual answers the tags gave to the

reader. The data given therein includes the signal strength and timestamp of the answers; the

information about which antenna read the tag was omitted for reasons of comprehensibility.

The interesting information in this figure is the different low-level reader data specific to the

moved and static pallets. Because the static pallet does not change distance from the antennas

it is read with an approximately constant signal strength over the entire data collection period.

This is completely different for the moved pallet, which is first detected with increasing signal

strength, reaching the maximum when the tag actually entered the gate about 1.5 seconds after

the start of the gathering-cycle. After leaving the gate, the signal strength decreased again.
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Figure 3.5.: Example of Low-Level Reader Data (Best Case)

Unfortunately though, while this example poses an illustrative case of RFID based pallet

identification, it is by no means typical for the majority of pallet detections. Figures 3.6 and

3.7 depict other examples of low-level reader data that elude the clear interpretation seen in

the previous case.

In these cases it is very difficult if not impossible to decide which of the pallets read during

the gathering-cycle actually moved through the portal, and it is obvious that some kind of

automatic classification system is necessary.

Figure 3.6(a) shows a moved pallet that was detected only 6 times within the first 0.4 seconds
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Figure 3.6.: Examples of Low-Level Reader Data (Normal Cases)

with a strongly decreasing signal strength and a static pallet that had a distinctive variation

in the received signal strength indication that evens out at a considerably high level.

Figure 3.6(b) shows a gathering-cycle where 3 different pallets were detected. Again the

moved pallet was seen only during a very short time frame, this time for only 0.2 seconds. The

first static pallet was seen for 3 seconds, but with only a few reads as well. The second static

tag showed a higher variance of RSSI values but was not detected within the first 2.5 seconds

after the pallet loading began.

Figure 3.7(a) shows 4 pallets, where the moved one was read over the entire time period and

with a high variance. This situation holds also true for static pallets #2 and #3. The only

pallet that could be visually determined as a false-positive is static pallet #1 that was read
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Figure 3.7.: Examples of Low-Level Reader Data (Further Normal Cases)

only during the last 3 seconds, with very low and constant RSSI values.

Figure 3.7(b) shows a similar situation with 5 pallets, where all pallets show a high variance

and are recognized throughout the entire time period under consideration. It is notable that

static pallet #1 is read with a constant very high signal strength and was likely located really

close to one of the antennas.

With respect to the number of tag-events and tag-occurrences generally any situation is

possible. There are gathering-cycles where only two tags are recognized and none of them more

than 3 times. On the other hand there are gathering-cycles with dozens of recognized RFID

tags and hundreds of individual answers. It is very difficult to describe a “normal case” because

this is significantly different - in particular this depends on the type of pallet and portal.
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In Figure 3.8 the number of tags per gathering-cycle is depicted. It can be seen that up to

18 tags can be detected in a single gathering-cycle. However, in the majority (around 85%) of

all gathering-cycles between 1 and 5 tags are read.
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Figure 3.8.: Number of Tags per Gathering-Cycle

In Figure 3.9 the number of tag-events per tag-occurrence is depicted. For presentation

purposes the chart has been limited to 50 tag-events per tag-occurrence. However, the median

is located at exactly 16.0 tag-events, i.e., 50% of all tag-occurrences are detected at most 16

times during a gathering-cycle. This number can increase to 400 in rare cases.
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3.2.4. Movement Detection

Considering the above examples of the low-level reader data, there are generally two alterna-

tive ways these can be used for the detection of tag movement. These alternatives differ in

complexity and in the level of information granularity that being used. The first alternative is

to work with the individual tag-events that are shown in the exemplary gathering-cycles above.

The second alternative is to determine characteristics specific to the set of all tag-events of

a certain tag (i.e., the individual tag-occurrences).

3.2.4.1. Tag-Event Level

Figure 3.5 above showed that moving a pallet through an RFID portal changes the received

signal strength. Because the individual tag-events are temporally ordered they can be inter-

preted as a discrete time-series of RSSI values. Figure 3.10 shows a selection of the low-level

reader data collected during the gathering-cycle shown in Figure 3.5. As can be seen from this

Figure, the data can then be transformed into separate time-series for the two tags.

The idea behind this approach is to decide whether the time-series of a tag is most similar to

a moved tag or to a static tag. If it looks more like a static time-series then it will be considered

a false-positive.

The first problem is to find out what a typical moved or static time-series actually looks

like. Several possibilities will be discussed regarding such typical time-series. These are called

reference time-series in the following and can be derived from the sample data. The second

problem is to give the term similarity a meaningful definition because determining similarity

between time-series is not an easy task. Fortunately, there are a number of approaches available

to deal with this problem.

3.2.4.2. Tag-Occurrence Level

In contrast to the tag-event level approach the tag-occurrence level approach works on a higher

level of data granularity. On the basis of the single tag-events so called attributes are calculated

that are generated by applying various aggregation functions and which correspond to specific

characteristics. Examples of such characteristics include the maximum, minimum and mean

RSSI values or the timestamp of the first or the last recognition of a tag during a gathering-

cycle. Figure 3.11 shows how the low-level reader data is used to transform the individual tags

into a representation based on these attributes.

The idea behind this approach is to identify false-positive RFID tag reads based solely on

the values these attributes take on. If the characteristics are typical for a static tag then it is
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EPC SOURCE SUBSOURCE TIME SINCESTART ANT RSSI
Tag 1 Portal56 MAIN 12:37:00,961 66000 3 -59
Tag 2 Portal56 MAIN 12:37:01,004 109000 2 -63
Tag 1 Portal56 MAIN 12:37:01,017   122000 3 -59
T 1 P t l56 MAIN 12 37 01 072 177000 3 58

EPC SOURCE SUBSOURCE TIME SINCESTART ANT RSSI
Tag 1 Portal56 MAIN 12:37:00,961 66000 3 -59
Tag 2 Portal56 MAIN 12:37:01,004 109000 2 -63
Tag 1 Portal56 MAIN 12:37:01,017   122000 3 -59
Tag 1 Portal56 MAIN 12:37:01,072 177000 3 -58
Tag 1 Portal56 MAIN 12:37:01,126 231000 3 -61
Tag 2 Portal56 MAIN 12:37:01,186 291000 2 -59
Tag 1 Portal56 MAIN 12:37:01,197 302000 3 -58
Tag 2 Portal56 MAIN 12:37:01,243 348000 2 -60
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Figure 3.10.: Transformation of Low-Level Reader Data into a Time-Series Representation

going to be considered a false-positive.

The difficulty of this approach lies in determining which attributes are meaningful enough

that a significant difference can be observed. The examples shown in Figures 3.6 and 3.7

demonstrate how different the low-level reader data can look like, a situation that requires that

a specific technique be used to determine in which cases which attributes are useful, and what

values are typical for moved and static tags.

3.3. General Introduction to Classification

After discussing the low-level reader data available, the aim of this section is to introduce the

general procedure for constructing a classification model and to present available approaches.

By understanding the business and the associated requirements the decision can be made as to

which models to use.

Classification is one of the most important tasks in machine learning. It is concerned with

assigning objects to classes based on their characteristics (or attributes). In [MB10] the goal of

classification is described as being to “build a model which makes it possible to classify future
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Figure 3.11.: Transformation of Low-Level Reader Data into an Attribute Representation

objects based on a set of specific characteristics in an automated way”. Considering the above

scenario of RFID enabled outgoing goods, the individual pallets that have been read during a

gathering-cycle correspond to the observed objects which can be separated into two disjunctive

classes: namely pallets that have been moved and pallets that have not been moved. These two

classes are referred to as moved pallets and static pallets, respectively.

While it is rather easy for a human observer standing next to the portal to decide whether

a pallet has just been moved or not this task is incomparably more difficult for a machine as

it only has a limited perception. The human observer can use his eyes to recognize position

changes and use available hypotheses like “If an object changes its position then it has been

moved”; the machine can only use the data that is available through the RFID reader to make

such a decision. In particular, the machine does not have any explicit knowledge of any position

changes to pallets inside an RFID portal.

3.3.1. Model Training using Supervised Learning

In [Kot07] Supervised Learning is described as “the search for algorithms that reason from

externally supplied instances to produce general hypotheses, which then make predictions about

future instances”. An instance in this context is any kind of object (e.g., an RFID tagged pallet)

plus a corresponding class label (e.g, a moved pallet).
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A hypothesis can be described as a function f that maps an object to a specific class:

f(Object)→ Class

If we assume that each object is described by n attributes and there are two classes C1 and

C2 then the hypothesis becomes as follows:

f(Attribute1, . . . , Attributen)→ {C1, C2}

The concept of supervised learning is based on the idea that there are a number of instances

available for which we know the attribute values as well as the corresponding class labels. When

training a classification model these known instances are used to identify attribute values or

attribute value combinations that are typical for a certain class and then to derive hypotheses

from this knowledge. Later on these hypotheses can be used to decide the class of a previously

unknown instance.

3.3.1.1. Attribute Value Types

In general there are two different types of attribute values that can be used to describe an

object. On the one hand there are categorical or discrete attributes which include nominal,

ordinal and binary data. Attribute values are called “nominal” if they fall into unordered

categories. If the values can be ordered they are called “ordinal”. In a case where there are

only two possible values the attribute is said to be a binary attribute. On the other hand there

are also continuous attributes with real numbers as values. The attribute value types of the

available sample data are essential in the decision making process since not all classification

models support every type.

3.3.1.2. Data Basis

When constructing a classification model it is necessary to determine its overall performance

in order to get some idea about how good it will actually perform on unseen data. Testing it

based on the data it has been built with will be very misleading and collecting new data every

time to verify its quality is out of the question. Therefore this data has to be obtained from

somewhere else. There are two common ways of dealing with this problem, one of which, the

Train and Test method, is depicted in Figure 3.12
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Figure 3.12.: Train and Test [Bra07a]

The sample data is divided into two disjunctive subsets referred to as the Training Set and

the Test Set. Three methods may be used to achieve this separation: linear sampling, shuffled

sampling or stratified sampling. Linear sampling simply separates the data set by using the first

x% as the test set and the remaining 1− x% as the training set. Shuffled sampling constructs

the two sets by randomly choosing data from the data set. Stratified sampling does the same,

however it is ensured that the class distribution in the sample sets is the same as in the whole

data set.

The classification model is built on the basis of the training set and then independently tested

against the data in the test set. Because using linear and shuffled sampling can sometimes lead

to the effect that only samples from a single class can be found in the training or test sets,

stratified sampling is favored. However, a single train- and test separation might be misleading

as well so this procedure is repeated multiple times with different train- and test sets and the

performances are averaged.

The second possibility is called k-fold cross validation [Sto74] and is depicted in Figure 3.13.

The sample data is divided into k disjunct partitions of approximately equal size. Each of

the k partitions is used as a test set while the classification model is trained on the remaining

k − 1 partitions. The average performance of these classifiers is then returned as the overall

performance. A special case of the k-fold cross validation is the leave one out method [LM68].

This method trains the classification model on all samples except one and then tests it against

this single one; it is computationally very expensive though, especially if there are a large

number of samples.
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Figure 3.13.: k-fold Cross Validation [Bra07a]

3.3.1.3. Performance Measures

After the classification model has been built on the training set it is necessary to evaluate its

performance on the test set. In order to achieve this, performance indicators are needed to

answer the following questions:

1. How many pallets are correctly classified as moved and static?

2. How many pallets are incorrectly classified as moved and static?

3. How many of the moved and static pallets are correctly classified as moved and static,

respectively.

4. If a pallet is classified as moved or static, how confident is this classification?

For this purpose, several suitable statistical measures have been proposed; the four most com-

mon are called Classification Accuracy, Classification Error, Class Recall and Class Precision.

They are introduced to answer the questions in the order given above.

Classification Accuracy This measure is often simply called Accuracy and corresponds to the

ratio of correctly classified samples.

Classification Accuracy =
Number of correctly classified samples

Number of samples
(3.1)
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Classification Error This measure depends directly on the classification accuracy because it

corresponds to the ratio of incorrectly classified samples. It is usually used for demon-

stration purposes only.

Classification Error =
Number of incorrectly classified samples

Number of samples
(3.2)

= 1− Classification Accuracy (3.3)

Class Recall This measure is used to determine the ratio of tags of a specific class C that

were classified correctly. Consequently, the class recall for moved and static tags are also

known as the moved detection rate and the static detection rate.

Class Recall (C) =
Number of samples correctly classified as C

Number of samples of class C
(3.4)

Class Precision This is a measure of how confident the classifications are, i.e., the ratio of all

samples classified as class C that were correctly classified:

Class Precision =
Number of samples correctly classified as C

Number of samples classified as C
(3.5)

Example (Classification Performance Measures)

Suppose a classification model was trained and evaluated on a test set containing

2,571 static and 656 moved pallets, and that furthermore, 2,552 of the static pal-

lets were correctly classified as static and 646 of the moved pallets were correctly

classified as moved; this leads to the following performance indicator values:

ClassificationAccuracy =
646 + 2, 552

3, 227
= 99.10%

ClassificationError = 1− 99.10% = 0.90%

ClassRecall(Static) =
2, 552

2, 571
= 99.26%

ClassRecall(Moved) =
646

656
= 98.48%

ClassPrecision(Static) =
2, 552

10 + 2, 552
= 99.61%

ClassPrecision(Moved) =
646

646 + 19
= 97.14%
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It is common to present these results in a so called confusion matrix such as that

in Table 3.2 where all relevant information is accessible at at-a-glance. The classi-

fication models in Chapter 6 are presented in this way.

Table 3.2.: Example Confusion Matrix

True Moved True Static Class Precision

Predicted as Moved 646 19 97.14%

Predicted as Static 10 2,552 99.61%

Class Recall 98.48% 99.26% 99.10%

3.3.2. Available Classification Models

There are several different classification models available to choose from. However, not all of

them are suitable for any given task because they work under different constraints and dif-

fer in complexity and performance. Probably the most popular and commonly used methods

are Decision Tree Learning, Neural Networks, Naive Bayes Classification and Support Vec-

tor Machines (SVM). Table 3.3 shows a rating of the characteristics of these methods. The

characteristics that have been identified as the most relevant in Section 3.1.3 are shown in bold.

In terms of learning speed neural networks and support vector machines perform much worse

compared to decision trees and naive bayes classification. Although this characteristic was not

defined as crucial, it is still very important when the data is unknown to the algorithm creator,

particularly because in the beginning a large number of tests have to be performed to find the

best and most suitable parameter selection. It is obvious that it is helpful if a new test can be

set up every few minutes instead of every few days.

Classification speed was defined as an important characteristic because the feedback needs

to be available to the warehouseman right after the loading of a pallet. This is not a problem

for any of the algorithms once they have been set up.

The ability to tolerate missing values and irrelevant, redundant or highly interdependent

attributes has a serious effect on the overall classification performance. Decision trees have no

problem dealing with missing values or irrelevant attributes because the method has an implicit

filter by using only the most interesting attribute subset and thus ignoring useless information.
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Table 3.3.: Classification Algorithm Comparison (Source: [Kot07])

Characteristic Decision

Trees

Neural

Networks

Naive

Bayes

SVM

Learning Speed ??? ? ???? ?

Classification Speed ???? ???? ???? ????

Tolerance to missing values ??? ? ???? ??

Tolerance to irrelevant attributes ??? ? ???? ????

Tolerance to redundant attributes ?? ?? ? ???

Tolerance to highly interdepen-

dent attributes

?? ??? ? ???

Numerical attributes Yes Yes No Yes

Nominal attributes Yes No Yes No

Tolerance to noise ?? ?? ??? ??

Danger of Overfitting ?? ? ??? ??

Classification Transparency ???? ? ???? ?

Accuracy ?? ??? ? ????

This is similar to naive bayes classification, whereas neural networks have a hard time dealing

with such problems.

Because the available attributes are of different types (see next chapter) it is very important

that a classification model can deal with both numerical and nominal data so that no information

loss occurs. As can be seen, only decision trees are able to deal with both types, whereas all

others work with either only numerical or nominal attributes. Although it is possible to use

tricks to transform, for example, nominal into numerical attributes or the other way around,

this does not always work.

Dealing with noise data is less important, the sample data set is expected to be big enough

that noise only plays a minor role.

The aim of the classification model to be built is to predict future pallet movements in the

distribution center. The ability to classify future data requires that the model is not overfitted.

The effect is explained in detail in section 5.1.5. The proposed classification models perform

more or less similarly, only neural networks have difficulties as they are likely to fit data to

irrelevant or redundant attributes.
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Another important characteristic was determined to be transparent decision tracking, i.e., the

classification transparency. This is one of the outstanding strengths of decision trees and naive

bays classifiers because the models are self-explanatory by simply looking at them, making it

a very easy to track any decisions and to evaluate at which point in the model an incorrect

Classification occurs and why this happens. In contrast to this, neural networks and support

vector machines are in almost any case absolutely impossible to explain because the models are

the results of millions of model building iterations.

Last but not least, the classification accuracy has to be compared. It is very difficult to

generally decide which classification model shows the best classification performance because

this depends heavily on the underlying data and the specific scenario under consideration.

Basically, neural networks and support vector machines are considered to be the most powerful

classification models. But because these two are not able to deal with both types of data

and have very poor transparency they will most likely perform worse in the data sets under

consideration and so decision trees are more suitable in this specific case.

Summing up, in this thesis decision trees were chosen over all other models as they are very

tolerant of missing values and irrelevant attributes and can also deal with both numerical and

nominal data. This will most likely lead to the best classification results, also because there are

ways to prevent the effect of overfitting. The explanatory power is also very important because

it was the explicit wish of the client to understand how and especially why the model classifies

pallets the way it does.

3.4. Summary

The aim of this chapter was to give a detailed overview of the outgoing goods process in a

distribution center from a business perspective on the one hand and a data perspective on the

other hand.

First of all, an in-depth view of an RFID enabled outgoing goods process was presented. The

procedure of loading pallets into a container was described, including the required pallet tagging,

loading pre- and postprocessing. The difference between standard pallets, stacked pallets and

mob-ware was explained and the fact that sometimes multiple pallets are loaded at the same

time was stressed. On this basis, the business objectives were derived. From the client’s point of

view, the approach to detecting false-positive RFID tag reads needs to minimize the number of

loading errors, avoid any further investment and ideally to also generate additional knowledge

that could possibly be carried over to other processes with similar problems. Next, these

business objectives were transformed into measurable performance indicators that contribute
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to the estimation of the solution’s success or failure. Furthermore, the requirements of the type

of classification model were derived from these objectives.

Secondly, the problem was described from a data perspective by investigating the available

low-level reader data. A unifying terminology was defined and the low-level reader data was

exemplarily described including the general idea that moved and static pallets show different

behaviors - in particular with respect to the received signal strength indication. The two major

approaches to detecting movement of RFID tags were then briefly introduced. The idea of

working on the tag-occurrence level is to identify specific characteristics that help to distinguish

between moved and static tags. The idea of working on the tag-event level is to consider the

development of the signal strength over time and to decide whether this development is more

typical of moved or static tags.

Because the overall aim of both approaches is to construct a so-called classification model

to detect false-positive RFID tag reads, the basics of such models were described including a

general introduction to the data mining task of classification and the type of allowed input data.

Strategies and key performance indicators to measure the quality of such a classification model

were described. Finally, based on business and data objectives, the most popular classification

techniques were evaluated and it was decided to go for the classification model constructing

using Decision Tree Learning.
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4. Data Collection and Analysis

4.1. Data Collection

The construction of a classification model requires the availability of a massive sample dataset

for which the class labels are already known. In the context of this thesis this means that

low-level reader data needs to be available and it needs to be known whether it belongs to

moved or to static pallets. Generally, there are three different methods to acquire a sample

data set.

1. Construct a test environment in a laboratory and then use it for the data collection task.

2. Simulate data on the computer.

3. Gather data in a real world scenario.

The first two methods were mainly used by the approaches presented in Chapter 2 and have

a number of drawbacks: for example, a lab environment tends to be very homogenous for every

single sample so it is questionable in how far the samples are able to adequately describe the

real world; the same applies to any findings under lab conditions because it is nearly impossible

to estimate in how far these can be matched to a productive environment. These two problems

apply to simulated data to an even more serious degree. It is obvious therefore that it is most

desirable to use data samples collected in a real world environment if the findings are to be

used there and are to exceed a theoretical or academic level. Furthermore, if access to the

productive environment is still available, it is very easy to test the validity of any conclusions.

The aim of this chapter is to describe how the data sets used for the classification model task

were acquired. First of all, the general procedure for the data collection is introduced along

with a description of how the class labeling of the sample data took place. Next, three different

RFID portals, denoted as Standard-, Satellite- and Transition Portals, are introduced; these

allow the definition of sub data sets corresponding to their respective types. For these data sets

individual classification models can then be built in order to further investigate whether one of

the portal types is more suitable for addressing the problem of false-positive RFID tag reads.
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4.1.1. Pallet Monitoring at METRO Group Distribution Center

The data set used in this thesis was collected in a productive environment and under real world

conditions at the METRO Group central distribution center located in Unna, Germany. This

center sees between 3,500 and 8,000 pallet movements a day and all of the 87 shipment dock

doors have been equipped with RFID portals to automatically register any outgoing pallets. As

stated in Section 1.3.3, the task is to reliably distinguish between pallets that have been moved

through the RFID portal (and thus were loaded) and pallets that have not been moved. In the

first case, the pallet is called a moved pallet and in the latter case it is called a static pallet or

a false-positive read.

In order to obtain the required sample data set students were assigned to accompany the

warehousemen and to monitor the loading of pallets from the distribution center into containers.

Their task was to keep track of which pallets that were recognized by the reader during the

loading process had actually been moved through the outgoing goods RFID portal and also

those which were present in the reading field of the portal antenna only by accident. For this

purpose they used a custom developed software called Varena Analyzer which immediately

after the ending of a gathering-cycle shows a list of all detected pallets. All they had to do then

was mark each entry (corresponding to an individual EPC) as either “moved” or “static”. A

screenshot of this application is depicted in Figure 4.1 where the loading of pallets on August,

17th 2010 is shown.

The relevant parts of the application are highlighted by the red box. In the leftmost column,

the students selected either “moved”, “static” or “unknown” for each pallet. By default, every

pallet is marked as “unknown”. The second column shows the result of the classification

algorithm currently in use in the distribution center. The value “true” is used to denote a pallet

as “moved” and the value “false” is used to denote it as “static”. Note that this information

in the second column was not shown to the students so as not to influence their decisions. The

following data shows information such as the EPC of the pallet, the number of tag detections

during that gathering-cycle or the minimum signal strength a pallet was detected with.

Note that due to the occurrence of stacked pallets it is possible that multiple pallets were

moved during the same gathering-cycle. In this case, several pallets, each with their own RFID

tag attached, had been stacked on top of each other and were moved through the portal all at

once (see Section 3.1.1.3).

The acquisition of the data used in this thesis ran for a period of 30 weeks from the beginning

of February to the end of August 2009 at the center’s shipment dock doors. Figure 4.2 shows

the number of pallets monitored in each calendar week.

It can be seen that the majority of the pallet monitoring took place between the 11th and
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Figure 4.1.: Screenshot of Varena Analyzer Software

27th calendar weeks. This is because in the beginning and at the end of the data acquisition

period fewer students were employed to do that task. The presence of the students did not

influence the warehousemen or the way they worked, so the sample data is an exact mapping

of the real world distribution center process.

In total, 92,857 pallets were monitored with 74,432 classified as “static” and the remaining

18,425 classified as “moved”. Usually pallets are detected multiple times during a single loading

process so this corresponds to 2,664,621 individual tag detections in total. It is expected that

this data set is large enough to cover any possible variances, allows for greater insights than

any simulation or lab trial, and thus provides the foundation for our proposed solution.

4.1.2. Data Selection

There is a phrase in the field of computer science, “Garbage in - Garbage out” (GiGo) which is

used to describe the effect where a system produces invalid outputs if it receives invalid inputs

[Pyl99, Lar05b]. In this context the phrase means that if the samples in the sample data sets
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Figure 4.2.: Monitored Pallets per Calendar Week in 2009

were marked incorrectly, then the resulting classification model is also going to be not correct.

Thus it is necessary to filter out any data that could possibly negatively affect the quality of the

classification model in advance to assure a smooth data set. Two different types of monitored

data considered as garbage were identified:

1. Tags that have an incorrect chip-type.

2. Tags that are called suspicious because it was very likely that they were marked or

monitored incorrectly by the students.

Both of these types are described below.

4.1.2.1. RFID Tags with incorrect Chip Types

In the METRO Group distribution center where the data collection took place, a variety of

different RFID chip-types were in use that differ in impedance and sensitivity as described

for example in [NSML09]. This means that different chip types are read with different signal

strength and with a different frequency during a loading. Since the classification model pre-

sented in this thesis heavily relies on this information it is important to concentrate only on

a single chip-type where a homogenous behavior can be expected. Table 4.1 shows the three

different chip-types that were in use: Monza 2 and Monza 3 tags developed by Impinj, Inc.,

along with tags developed by NXP Semiconductors.

Very few tags (110 in total) are of type Monza 2, so they can be easily discarded from our

data. The 7,797 NXP tags are much more significant, but even after removing these there are

still more than 83,000 monitored tags remaining. For 1,134 monitored tags it was not possible
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to determine the corresponding tag type; consequently they are removed as well. This leaves

only the remaining set of 83,816 tags using a Monza 3 chip-type as the final data set to continue

with.

Table 4.1.: Number of monitored Pallets per Chip-Type

Chip-Type Monitored Tags

(Unknown) 1,134

Monza 2 110

Monza 3 83,816

NXP 7,797

Total 92,857

4.1.2.2. Suspicious Tags

The second type of garbage data is connected with the students who monitored the pallets. As

with any activity involving manual work the monitoring was error-prone and the resulting data

set therefore not completely inaccurate. Two different kinds of problems were identified where

it is very likely that a student made a mistake by assigning the wrong class to a pallet (i.e.,

it was marked as “static” although the pallet was “moved” or the other way around). These

data samples are called suspicious tags.

The first group of suspicious tags is called never moved tags. Suppose that every time a pallet

was detected in any gathering-cycle a student was present to mark it as “moved” or “static”. In

several cases it is definitely known that this pallet has been shipped, for example because one of

the destination markets confirmed its arrival. But, it has been marked as “static” every single

time. This means that the student made a mistake in at least one of these gathering-cycles

where it should have been marked as “moved”. But because it is not known for sure which of

the pallet occurrences was marked incorrectly, as a precaution all of them are removed from

the sample dataset.

The second kind of suspicious tags are called multiple moved tags. This term is used to

describe a pallet that has been marked as “moved” in different gathering-cycles (i.e., in different

loadings). There is a slight chance that this might really happen, for example because a pallet

has been removed from the container and was reloaded at some point later. However, because
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it is not possible to decide whether this really was the case, all occurrences of a tag that has

been marked as “moved” multiple times are removed from the data set.

Table 4.2.: Suspicious Tags

Monitored Tags Never Moved Multiple Moved

83,816 865 341

Table 4.2 shows the number of suspicious tags corresponding to each type. In total there

were 1,206 monitored pallets that were either never- or multiple moved. This corresponds to

1.4% of the 83,816 Monza 3 tags monitored altogether. Accordingly, only the remaining 82,610

monitored pallets serve as the sample data set in the following.

4.2. Data Sources

The sample data set of 82,610 monitored pallets can further be separated into three major

sub data sets. These correspond with the three different RFID portal types installed at the

distribution center in Unna which differ in their configuration and functionality. The naming

of the portal types, Standard Portals, Satellite Portals and Transition Portals, is based upon

their general antenna adjustment which is described in more detail below.

Figure 4.3 depicts an outline of the distribution center where the data collection took place

and Table 4.3 shows which portals belong to which portal type. Note that the Satellite Portals

are also listed as Standard Portals and that not all portals were really used for the monitoring

task. The reason why Standard- and Satellite Portals overlap is because portals 23-26 were

used as Satellite Portals for only a short time before being rebuilt as Standard Portals. Thus,

some of the data monitored at these portals belongs to the Standard- type and the rest belongs

to the Satellite Portals. A complete list of how many pallets have been monitored at each

individual portal can be found in the appendix (Tables B.1, B.2, B.3 and B.4).
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Figure 4.3.: Map of Portal Locations at METRO Distribution Center Unna, Germany

Table 4.3.: Portal Number Overview

Portal Type Portal Numbers Total

Standard Portals 9-21,23-62,64-89 79

Satellite Portals 23-26 4

Transition Portals 1-8 8

4.2.1. Standard Portals

The most commonly used type of RFID portal in the distribution center is the Standard Portal ;

its general antenna configuration is shown in Figure 4.4(a). A single reader is used with four

different antennas (called Main Antennas) attached to it, two at each side of the portal, on top

of each other and face to face with the other two. Antenna #1 is located bottom-left, antenna

#2 bottom right, antennas #3 and #4 are located top left and right, respectively. The design

is very similar to the RFID portal depicted in Figure 1.3.
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Figure 4.4.: Antenna Configuration of different Portal Types

The automatic recognition procedure of RFID tagged pallets passing a Standard Portal is

shown in Algorithm 1. As soon as a warehouseman approaches the portal this is recognized

by the motion sensor, triggering the RFID reader to start scanning for transponders in range.

All four antennas start scanning simultaneously and every single tag detection is recorded until

the stop trigger is activated and the scan is terminated. The stop trigger activation can be the

result of two different events:

1. The motion sensor recognized that the warehouseman has left the container.

2. If the motion sensor does not recognize that the warehouseman has left the container

within 10 seconds from the beginning of the gathering-cycle, it is terminated automati-

cally.

Immediately afterwards, all tags that have been read during the loading are marked as

“loaded” in the loading protocol.

4.2.2. Satellite Portals

Satellite Portals are an advanced version of the Standard Portals which use an additional RFID

reader with 4 more antennas. Two of these antennas are directed toward the distribution center
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Algorithm 1: Standard Portal Loading

output: Set T of tags read during a gathering-cycle

if Start trigger activated then

repeat /* Using Main Antennas */

if Tag t has been recognized then
if t /∈ T then Add t to T

until Stop trigger activated

end

foreach Tag t ∈ T do
Mark t as loaded in the loading protocol

end

return Tags T

(antennas #7 and #8) and the other two (antennas #5 and #6) are directed toward the truck

- as can be seen in Figure 4.4(b). The four remaining (1-4) correspond to the antennas also

used in the Standard Portals and are thus still referred to as Main Antennas. The additional

antennas #7 and #8 are denoted DC Antennas and the other two (#5 and #6) are denoted

Truck Antennas.

The automatic recognition procedure of RFID tagged pallets passing a Satellite Portal is

shown in Algorithm 2. As soon as a warehouseman approaches the portal this is recognized

by the motion sensor, triggering the RFID reader to start scanning for RFID tags in range.

In addition to the four Main Antennas the two Truck Antennas start scanning simultaneously

and every single tag detection is recorded until the stop trigger is activated and the scan is

terminated. At that moment the DC Antennas start scanning for transponders still present in

the distribution center. The idea behind this is that a tag that moved through the portal is

expected to be inside the container rather than inside the distribution center. Consequently, all

reads of tags that can be seen in the distribution center after the end of the actual gathering-

cycle should be considered false-positive. The logic behind this antenna configuration leads to

7 disjunctive cases that can apply to a transponder detected during a specific loading.

Case 1 The tag has been read by Main-, Truck- and DC Antennas. This first case is interesting:

this is a situation where after the loading has finished reflections can cause an effect where

a tag can still be seen inside the distribution center even although it had previously moved

through the portal and onto the truck. Tags that this case applies to are most likely false-

positives.
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Case 2 The tag has been read by DC- and Main Antennas only. This means that the tag has

been seen during the loading but afterwards appears to be still in the distribution center.

Tags in this Case are expected to be static, i.e., false-positives.

Case 3 The tag has been read by DC- and Truck Antennas but not by the Main Antennas.

This case is similar to Case 1 since reflections cause the effect that the tag appears to be

in two different locations. These tags are expected to be false-positives.

Case 4 The tag has been read by the DC Antennas only. Since the tag has neither been read

by the Main- nor by the Truck Antennas, it has likely not been moved through the portal

and thus is a false-positive.

Case 5 The tag has been read by Main- and Truck Antennas. This is like the first case, where

a tag is expected to have been loaded into the container because it was seen during the

loading and afterwards the DC Antennas signal that it is not in the distribution center

anymore.

Case 6 The tag has been read by the Main Antennas only. This means that a tag has been

read during the loading but then suddenly vanishes. Nevertheless the tag has apparently

passed through the portal and is thus expected to be in the container.

Case 7 The tag has been read by the Truck Antennas only. These tags have not been read

during the loading and consequently it is most likely that they have been loaded at a

previous point in time and thus are false-positives.

4.2.3. Transition Portals

Like the Standard Portals the Transition Portals make use of two different readers, but they

do not have any Main Antennas (see Figure 4.4(c)). The general idea is that the 4 antennas of

the first reader (antennas 1-4) are directed toward the distribution center and the 4 antennas

of the second reader (antennas 5-8) are directed towards the truck.

The automatic recognition procedure of RFID tagged pallets passing though a Transition

Portal is shown in Algorithm 3. As soon as a warehouseman approaches the portal this is

recognized by the motion sensor, triggering the RFID reader to start scanning for transponders

in range. DC- and Truck Antennas begin scanning simultaneously and every single tag detection

is recorded until the stop trigger is activated and the scan is terminated. The idea behind this

is that a tag that moved through the portal is expected to be seen first by the DC Antennas
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Algorithm 2: Satellite Portal Loading

output: Set T of tags read during a gathering-cycle

if Start trigger activated then

repeat /* Using Main- and Truck Antennas */

if Tag t has been recognized then
if t /∈ T then Add t to T

until Stop trigger activated

repeat /* Using DC Antennas */

if Pallet t has been recognized then
if t ∈ T then Remove t from T

until Stop trigger activated

end

foreach Tag t ∈ T do
Mark t as loaded in the loading protocol

end

return Tags T

and afterwards by the Truck Antennas. Accordingly, all tags seen only by the DC- or only by

the Truck Antennas should be considered false-positive reads. The logic behind this antenna

configuration leads to 3 disjunctive cases that can apply to a transponder detected during a

specific loading.

Case 1 The tag has been read by the DC Antennas only. Since it has not been read by the

Truck Antennas it is likely to be a false-positive tag.

Case 2 The tag has been read by the Truck Antennas only. Similar to Case 1 it is likely to be

a false-positive.

Case 3 The tag has been read by the DC- Antennas as well as by the Truck Antennas. It is

most likely that this tag has been moved through the portal and thus has been loaded

into the container.

4.3. Data Set Compilation

On the basis of the three different portal types described above the three major data sets are

compiled. In principle, each portal type is represented by its own data set. However, Satellite-

and Transition Portals lead to different cases that transponders can apply to, so these in turn

are interpreted as distinct sub data sets. Table 4.4 shows the portal types including possible

cases, the particular antennas that read the tag and the denomination of the respective data

sets.
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Algorithm 3: Transition Portal Loading

output: Set T of tags read during a gathering-cycle

if Start trigger activated then

repeat /* Using DC- and Truck Antennas */

if Tag t has been recognized then
if t /∈ T then Add t to T

until Stop trigger activated

end

foreach Tag t ∈ T do
if t has not been read by Main Antennas then Remove t from T

if t has not been read by Truck Antennas then Remove t from T
end

foreach Tag t ∈ T do
Mark t as loaded in the loading protocol

end

return Tags T

Table 4.4.: Data Set Denomination

Portal Type Involved Antennas Data Set

Standard Portals Main Antennas STD COMPLETE

Satellite Portals (all cases) Union of cases 1-7 SAT COMPLETE

Case 1 Main-, Truck- and DC Antennas SAT ALL

Case 2 DC- and Main Antennas SAT DC MAIN

Case 3 DC- and Truck Antennas SAT DC TRUCK

Case 4 DC Antennas only SAT DC ONLY

Case 5 Main- and Truck Antennas SAT MAIN TRUCK

Case 6 Main Antennas only SAT MAIN ONLY

Case 7 Truck Antennas only SAT TRUCK ONLY

Transition Portals (all cases) Union of cases 1-3 TRA COMPLETE

Case 1 DC Antennas only TRA DC ONLY

Case 2 Truck Antennas only TRA TRUCK ONLY

Case 2 DC- and Truck Antennas TRA BOTH
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4.3.1. Standard Portals

The number of moved and static tags monitored at the Standard Portals including the resulting

false-positive rate is shown in Table 4.5.

Table 4.5.: Monitored Pallets at the Standard Portals

Data Set Moved Tags Static Tags Total Tags False-Positives

STD COMPLETE 13,245 40,743 53,988 75.47%

A total of 53,988 pallets were observed by the students, of which 40,743 were false-positives.

This meant that on average there are slightly more than 3 static tags per moved tag read during

a gathering-cycle which corresponds to a false-positive rate of 75.47%. It is obvious then, that

in order to attain a reliable and fully functional RFID enabled outgoing goods process these

false-positives need to be filtered out.

4.3.2. Satellite Portals

The number of moved and static tags monitored at the Satellite Portals, including the false-

positive rate, is shown in Table 4.6. Based upon the possible cases defined in Section 4.2.2 the

respective data is shown for each individual sub data set.

A total of 14,777 pallets were monitored by the students, of which 12,806 were false-positives.

This means that on average there are almost 6.5 static tags per moved tag read during a

gathering-cycle which corresponds to a false-positive rate of 86.66%. The general idea of the

Satellite Portals was that tags that were read by the DC Antennas are expected to be static.

These tags can be found in the following data sets:

- SAT ALL,

- SAT DC MAIN,

- SAT DC TRUCK and

- SAT DC ONLY.

In sum there are 3,247 tags in these data sets of which 3,225 were static. This corresponds

to a false-positive rate of 99.32%. Of the 5,122 tags that were read only by the Truck Antennas
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99.79% were false-positives. Because of the very high false-positive rate, each tag that applies

to one of the above cases is automatically considered to be a false-positive. The remaining data

sets of interest are

- SAT MAIN TRUCK and

- SAT MAIN ONLY.

For these tags only, a classification model needs to be constructed.

Table 4.6.: Monitored Pallets at the Satellite Portals

Data Set Moved Tags Static Tags Total Tags False-Positives

SAT ALL 10 279 289 96.54%

SAT DC MAIN 12 784 796 98.49%

SAT DC TRUCK 0 40 40 100.00%

SAT DC ONLY 0 2,122 2,122 100.00%

SAT MAIN TRUCK 1,282 1,899 3,181 59.70%

SAT MAIN ONLY 656 2,571 3,227 79.67%

TRUCK ONLY 11 5,111 5,122 99.79%

SAT COMPLETE 1,971 12,806 14,777 86.66%

4.3.3. Transition Portals

The number of moved and static tags monitored at the Transition Portals, including the false-

positive rate, is shown in Table 4.7. Based upon the possible cases defined in Section 4.2.3 the

respective data is shown for each individual sub data set.

A total of 13,845 pallets were observed by the students, of which 12,487 were false-positives.

This means that on average there are around 9.2 static tags per moved tag read during a

gathering-cycle which corresponds to a false-positive rate of 90.19%. The general idea of the

Transition Portals is that transponders that were seen either by only the DC- or only by the

Truck Antennas are expected to be static. These tags can be found in the

- TRA DC ONLY and

- TRA TRUCK ONLY
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Table 4.7.: Monitored Pallets at the Transition Portals

Data Set Moved Tags Static Tags Total Tags False-Positives

TRA DC ONLY 28 5,779 5,807 99.52%

TRA TRUCK ONLY 31 4,316 4,347 99.29%

TRA BOTH 1,299 2,392 3,691 64.81%

TRA COMPLETE 1,358 12,487 13,845 90.19%

data sets. In sum there are 10,154 reads in these data sets of which 10,095 were static. This

corresponds to a false-positive rate of 99.42%. Because of the very high false-positive rate, each

tag that applies to one of the above cases is automatically considered to be a false-positive.

The remaining data set of interest is

- TRA BOTH.

For these tags only, a classification model needs to be constructed.

4.3.4. The Final Data Sets

The separation of the monitored data into distinct subsets revealed a number of cases where the

application of a classification model is unnecessary because of the very high false-positive rate.

For example, every single one of the 2,122 tags that were detected only by the DC Antennas of

the Satellite Portals were false-positives, thus tags corresponding to this case can be classified

as “static” by definition. The relevant data sets for which a classification model needs to be

generated are shown in Table 4.8.

Table 4.8.: Sample Data in the Relevant Data Sets

Data Set Moved Tags Static Tags Total Tags

STD COMPLETE 13,245 40,743 53,988

SAT MAIN ONLY 656 2,571 3,227

SAT MAIN TRUCK 1,282 1,899 3,181

TRA BOTH 1,299 2,392 3,691
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4.4. Summary

This chapter comprised three major parts. First of all, the process whereby the students

collected data by monitoring the loading of pallets into containers was described. This exercise

ran for almost seven months at the METRO central distribution center in Unna, Germany, and

comprised 92,857 pallet observations. It was shown that the major proportion of these were

actually false-positive tag reads, i.e., pallets that had not been loaded into containers but were

present in the reading field of the antennas only by accident. Under the assumption that any

manual work is error-prone, two types of suspicious tags were identified that were obviously

monitored incorrectly. The first type is denoted never moved tags and corresponds to those tags

that have never been marked as “moved” although it is known that they were loaded at some

point. The second group is denoted multiple moved tags and corresponds to those tags that

have been marked as “moved” (i.e., as loaded) multiple times. In addition, any transponders

using a chip-type other than Monza 3 were removed in order to guarantee a homogenous and

meaningful sample data set.

The second part introduced the three different portal types (Standard-, Satellite- and Tran-

sition Portals) in use at the distribution center. While Standard Portals are the most common

and most intuitive portals with 4 antennas scanning whatever moves through the portal, the

other two are more advanced versions with additional readers and antennas. These other two

types furthermore, encompass an additional but rather simple procedure to filter out false-

positive RFID tags on a logical level.

Satellite Portals have antennas that also scan what is inside the truck at the same time the

Main Antennas try to read what moves through the portal. Afterwards two more antennas

directed towards the distribution center are used to double-check which pallets that have been

read before can still be seen there. Any tag that is still present in the distribution center is

considered a false-positive.

Transition Portals meanwhile, have four antennas directed towards the distribution center

and four more directed towards the truck. It is expected that any pallet moving through this

portal is read first at the distribution center and afterwards inside the truck. Pallets read only

inside the truck or only in the distribution center are considered false-positives.

The third part was about the compilation of the final data sets for which a classification

model is going to be generated. First of all, there is the set comprising the pallets monitored at

the Standard Portals and denoted as STD COMPLETE. The second data set comprises the pallets

monitored at the Satellite Portals and can be further divided into two disjunctive subsets

denoted as SAT MAIN ONLY and SAT MAIN TRUCK. As the names indicate, the first set comprises
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the tags that were read only by the Main Antennas of the Standard Portals and the latter set

comprises tags that were read by both Main- and Truck Antennas. The last data set, TRA BOTH,

comprises the tags read by both DC- and Truck Antennas at the Transition Portals.

The problem of false-positive RFID tag reads could be observed regardless of the type of

portal. During the monitoring exercise, a large amount of data was collected for each of the

portals; this will be inputted into the classification model in the following chapters.

63



5. Classification Model Building

It was stated in Section 3.3 that the training of a classification model requires a description of the

objects to be classified by means of so called attributes. The performance of any classification

model depends highly upon the ability of these attributes to successfully map the object’s

characteristics. Consequently, attribute identification and -evaluation are the most important

tasks when building a classification model and require a dedicated investment of time and effort.

Accordingly, this chapter can be regarded as the core of the thesis as it describes the attributes

required for the definition of a classification model framework to distinguish between moved

and static pallets. It is organized as follows: first of all, the type of classification model chosen,

Decision Trees is introduced and described in detail; next, the attributes and their generation

on the basis of the Tag-Event- and the Tag-Occurrence Level is described. Because both

approaches result in independent classification models with different strengths and weaknesses

an additional approach is presented that combines the two of them.

The chapter closes by proposing a fourth approach that relies on the attributes presented

here but can only be used if it is known in advance how many tags need to be classified as

moved (or static, depending on the scenario).

5.1. Classification using Decision Tree Learning

The overall target of the classification model is to decide whether a pallet has been loaded into

the container or not, solely on the basis of the low-level reader data collected during a gathering-

cycle. Among several available classification models, Decision Tree Classification [Coh95] was

identified as the most appropriate approach to take in the scenario under consideration.

A decision tree is a powerful and commonly used machine learning technique that performs

a sequence of attribute value tests to ultimately determine a classification. In contrast to

many other machine learning techniques (e.g., Neural Networks [Zha00], Naive Bayes Learning

[Hec95] or Support Vector Machines [Bur98]), Decision Tree Classification uses a white-box

model, which allows the user to easily replicate classification results. It is this core property in

particular, that motivated the decision to use decision tree classification over other approaches.
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5.1.1. An Example Decision Tree

An example decision tree is given in Figure 5.1, where each object is tested against the attribute

values of attributes A, B, C and D while descending the tree from the top node (called root

node or simply root) to the bottom nodes (called leaves). The complexity of a tree is usually

described by its depth for the actual classification. Since this depth depends on the maximum

number of tests that have to be performed, the one shown here is a depth-3 decision tree. The

leaves correspond to the final classification of a pallet.

 

> Y  <= Y  YES  NO 

YES NO 

<= X > X 

Attribute A 

Attribute B  Attribute C 

Attribute D Moved 

Moved  Static 

Moved  Static 

Figure 5.1.: Example Decision Tree

Note that in this example some attributes have a different attribute value type: Attributes

A and B are numerical type and, therefore, two thresholds X and Y are tested. Attributes

C and D, however, describe a nominal characteristic that takes on only the values Yes or No.

The type of decision tree shown in this figure is called a binary decision tree because there is a

binary decision made at each node leading to exactly two outgoing branches per attribute. Of

course, a decision tree is not limited simply to this. For example, a nominal attribute might be

used that takes on 3 different values, e.g., Yes, No and Unknown. In this case there would be

three outgoing branches from the corresponding node.

A path from the root to a leaf is called a rule. For example, Algorithm 4 shows the rule

evaluation for the path from the root to the second left-most leaf. All tags that this rule applies

to (i.e., that pass the 3 attribute tests) are said to be covered by that rule.

At this point it is reasonable to focus on the question of why at specific nodes a certain

attribute is chosen in favor of another one. So why, for example, is attribute A evaluated at the
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Algorithm 4: Example Decision Tree Rule Evaluation

if Attribute A > X ∧ Attribute B ≤ Y ∧ Attribute D = No then
Moved

end

root level and not attribute B or attribute C? The answer to this question is that any classifi-

cation algorithm is trying to generate a model that is most confident with its classifications, i.e.

in terms of decision trees, that has leaf nodes as pure as possible. Consequently, the attributes

used in the tree are not selected randomly but constitute the results of the attempt to grow

the tree with the purest leaves. Algorithm 5 provides the general pseudo-code for building a

decision tree [Kot07].

Algorithm 5: Decision Tree Building

if All samples belong to the same Class C then
return Root Node

end

foreach Attribute A do
Calculate the ability to use A as the Attribute to split on

end

Let ABest be the best attribute to split on.

Create a decision node N that splits on ABest

Recurse on the sub-lists obtained by splitting on ABest and add those nodes as children

of N

5.1.2. Rule Expressiveness

In Section 3.1.2 it was mentioned that a key business objective for this research was to un-

derstand how and why the model decides the way it does. With this objective in mind, some

kind of statistical measure is required to describe the quality of an individual classification rule

rather than the entire model. Three measures are commonly used in machine learning and

especially in the context of association rule mining (e.g. [SON95, LAR02]), these are denoted

as confidence, support and completeness. These measures can also be applied to the rules of a

decision tree without problems.

Every rule (or path in a decision tree) has by definition the following form:

if Condition A then Classification C.
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Note that A can easily correspond to multiple conditions (compare Algorithm 4). Let NCond

denote the number of samples matching condition A and NClass denote the number of samples

of class C. Furthermore, let denote NBoth the number of samples matching both condition A

and class C and NTotal denote the total number of samples. The meaning of the statistical

measures can then be explained as follows:

Confidence This is a measure of how confident the rule is, i.e., how many of the samples

covered by that rule are classified correctly:

Confidence =
NBoth

NCond

Support This is a measure of generality, i.e., how many of the total number of samples are

covered by that rule and are classified correctly:

Support =
NBoth

NTotal

Completeness This is another measure of generality, i.e., how many of the samples of a specific

class are covered by that rule and are classified correctly:

Completeness =
NBoth

NClass

After the rule evaluation measures are introduced, in the following section two approaches to

decision tree learning are presented. Called C4.5 and CART , they can be used independently

of each other to discriminate between moved and static pallets. The difference between them lies

in how they select attributes and corresponding thresholds at the individual nodes. However,

in most cases it is a good idea to use both of them and then evaluate which one returns the

best classification model.

5.1.3. C4.5 Algorithm

The C4.5 algorithm [Qui93] is a more advanced version of the seminal ID3 algorithm presented

in 1986 [Qui86]. For each node in the decision tree, C4.5 determines the optimal attribute

by making use of two common concepts from information theory and machine learning, called

entropy and information gain (also known as Kullback-Leibler divergence) [HMS66, Lar05c].

In information theory the term entropy is used to measure the amount of uncertainty con-

tained in a data set because of the presence of multiple object classes (in this case moved

and static tags). Because an in-depth knowledge of data coding techniques is required to fully

67



understand the theory behind entropy, only a brief introduction is given in this thesis; a very

good introduction to the concepts of entropy and information gain can be found in [Bra07b]

and [Bra07c]:

Suppose a data set D contains objects of two different classes O and P with frequencies pO

and pP . If an object of class O is drawn randomly then the probability for each object o ∈ O
to be selected is 1

pO
. To distinguish these individual objects log2(

1
pO

) = − log2 (pO) bits are

required. This is the called self-information of class O that can further be weighted by pO to

acquire the average self-information of class O. Summing up the average self-information of

every class results in the entropy H of the entire data set:

H(D) = −
n∑

i=1

p(i) log2 p(i)

Without loss of generality, the dataset collected at the standard portals is used to illustrate

these calculations. There are two different classes (moved and static) in the data set D with

75.8% static and 24.2% moved tags. Thus, the entropy of the dataset equals

H(D) = −(0.7542 · log2 0.7542 + 0.2458 · log2 0.2458) = 0.805

Let A be an attribute and x a threshold under consideration. Then D≤ is the set containing

all tags having a value for attribute A less than or equal to x and D> is the set of all tags with

an attribute value greater than x:

D≤(A, x) := {Tag ∈ D|Tag(A) ≤ x} D>(A, x) := {Tag ∈ D|Tag(A) > x}

The information gain can now be interpreted as a measure of how well the two tag types can

be separated using a specific value as threshold and is a common method in machine learning

[GH07]. Illustrated below is how the information gain obtained for specific values on the basis

of the entropy is used to determine the best attribute and the optimal threshold to separate

moved tags from the false-positives. The information gain I obtained by splitting attribute A

on x is defined as

I(A, x) = H(D)−
[
|D≤(A, x)|
|D|

·H(D≤(A, x)) +
|D>(A, x)|
|D|

·H(D>(A, x))

]
.

The optimal threshold o to separate moved and static tags is the one where the information

gain is maximized, i.e.,

o(A) = max
x∈X
{I(A, x)}.
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If there were a perfect attribute, i.e., one with a threshold value perfectly splitting static

and moved tags, the maximum information gain of the attribute is equal to the entropy of the

dataset, 0.805. In C4.5 the preceding calculations are repeated for every available attribute.

The attribute with the highest information gain is then returned as the best attribute to split

on.

5.1.4. CART Algorithm

A further approach is based on Breiman’s Classification and Regression Trees [BFSO84]. Just

like before, the algorithm tries to determine the attribute to split on by evaluating all possible

threshold values. However, here it uses a different way to measure the goodness of a candidate

threshold to split on [Lar05c].

Let D be the set of all sample data and x a threshold under consideration for an attribute A.

Without loss of generality, let D≤ and D> be the set of tags with an attribute value less than

and greater than x, respectively. Then the quality measurement G of splitting an attribute A

on x is calculated as

G(A, x) = 2 · P≤ · P> ·
n∑

c=1

|P (c|D≤)− P (c|D>)|

where c is the number of classes and P≤ and P> correspond to the weights of the two subsets.

P (c|D≤) and P (c|D>) are defined as

P (c|D≤) =
|{Tag ∈ D≤| class of Tag = c}

|D|

P (c|D>) =
|{Tag ∈ D>| class of Tag = c}

|D|
.

The optimal threshold value used to split on attribute A is the one that maximizes G. These

calculations are repeated for every attribute and the attribute with the highest goodness value

G is then returned as the best attribute to split on.

5.1.5. Overfitting

A very important issue that needs to be dealt with with any classification model, including the

decision trees created using the two above approaches, is the problem of overfitting. In [Bra07a]

it is stated that a classification model “is said to overfit to the training data if it generates a

decision tree [...] that depends too much on irrelevant features of the training instances, with

the result that it performs well on the training data but relatively poor on unseen instances”.
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In the context of the scenario presented in this thesis, this means that an overfit classification

model would have a very low error rate with respect to the sample data but would not perform

well in a productive system because it won’t classify future pallet loadings correctly.

There is a significant relationship between the complexity of a classification model and its

error rate as can be seen in Figure 5.2. In Section 3.3.1.2 the concept of train and test was

described to divide the sample data into a training set and a test set (also called validation

set). This figure shows how the error rate in the training data decreases with increasing model

complexity. In the beginning, the same applies to the test data but at some point this error

rate increases again when the classification model becomes too complex. This is exactly the

point where the model begins to overfit to the training data. Consequently, the optimal model

complexity is where the error rate in the test data is minimal. However, the complexity of the

model must also not be too restrictive because in this case, the model is said to be underfit and

won’t show optimal performance on the training or on the test sets.

E
rr

or
 R

at
e

Complexity of Model

Error Rate on
Training Set

Error Rate on
Validation Set

Underfitting

Optimal Level of
Model Complexity

Overfitting

Figure 5.2.: Relationship between Model Complexity and Overfitting. Source: [Lar05a]

Summing up, the complexity of a decision tree must be limited in order to avoid or minimize

the effect of overfitting. This is often done by pruning, i.e., simplifying the decision tree by

removing certain branches or nodes. There are two different types of pruning strategies, pre-

pruning and post-pruning ; a good overview is given in [Mar97]. Pre-pruning means that at
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some point during the decision tree generation phase it is decided to not separate the dataset

any further. This requires some kind of stopping criterion to decide whether it is reasonable to

continue the tree generation at this point or not.

There are several stopping criteria that can be used with size cutoff and maximum depth

cutoff being two of them [Bra02]. Size cutoff avoids further tree generation if the resulting

nodes contain less than a given threshold number of objects. Maximum depth cutoff stops the

tree generation if the rule length (i.e., the tree depth) is longer than a predefined threshold. In

this thesis, the decision trees try to ensure a number of at least 5% of the total sample data per

leaf and are ultimately limited to a depth of 4. However, in some cases the leaf size constraint

cannot be guaranteed, for example if there is less than 5% of the sample data left to finish the

tree generation.

In contrast, post-pruning involves building a complete decision tree and then removing spe-

cific branches and nodes to simplify the tree and to improve the classification rate on the test

set. There are a number of different post-pruning strategies available. The C4.5 algorithm

uses an approach called error based pruning [Qui93], while CART’s pruning strategy is called

cost complexity pruning [BFSO84]. Because these two are used in our proposed decision tree

learning techniques they are described in the following sections.

5.1.5.1. Error Based Pruning

Error based pruning takes the error of an inner node and the error of the subtree rooted at

that node into account. For a node o containing No samples of which mo belong to the majority

class (i.e., the class with the most representatives in that node) its error Eo is estimated by

Eo =
No −mo + 0.5

No
.

For a subtree S originating at node o and with k leaf nodes the error ES is calculated by

ES =

∑k
i=1 (Ni −mi + 0.5)∑k

i=1Ni

.

The standard error of the subtree, SES , is estimated by

SES =

√
ES · (1− ES)∑k

i=1Ni

.

If the error of the subtree plus the standard error is greater than the error at that inner node,
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then the subtree is entirely pruned. Accordingly, subtree S is pruned if

Eo ≤ ES + SES

holds true. In this case the inner node o becomes a leaf node classifying each object as the

majority class in o.

5.1.5.2. Cost Complexity Pruning

In contrast to error based pruning, cost complexity pruning requires a test set and tries to find

a good trade-off between the error estimated in the test set and the complexity of the decision

tree. The complexity CS of a tree S is determined by the number of leaves within that tree.

If o is an inner node serving as the root for S, then Eo and ES correspond to the error of o

and S, respectively. If α is some real number and a measure of tree complexity, the total cost

CostS of S is then estimated by

CostS = ES + α · CS

If S is pruned and replaced by a node o then the costs Costo of node o are estimated by

Costo = Eo + α

Equalizing the two cost functions leads to

α =
Eo − ES

CS − 1

Cost complexity pruning involves calculating α for every node. Starting with the original

tree having the maximum size, a sequence of trees is generated by pruning the subtree with

the lowest value of α in each step. The algorithm stops with the minimal tree containing only

the root node. This sequence of trees is then ranked according to the cost complexity and the

best trade-off between complexity and number of nodes has to be found. There are several

rules available to estimate the best trade-off. For example, in the original work, Breiman et al.

proposed selecting the tree within one standard error of the minimum cost tree that also has

the least number of nodes.

5.1.6. Attribute Type Categorization and Investigation

In the preceding sections the foundations of decision tree learning, including evaluation of rule

expressiveness and avoidance of overfitting, were explained. The next step is the identification
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of attributes that can be used to describe moved and static pallets and that serve as input to

the decision trees.

Each tag-event t, i.e., each single detection of a tag during a gathering-cycle can be repre-

sented as a three-tuple of signal strength, timestamp and antenna:

t = (RSSI, SinceStart, Antenna)

Next, if a specific RFID tag has been detected n-times during a gathering-cycle, the corre-

sponding tag-occurrence T as the whole of these tag-events can be represented as

T ={t1, . . . , tn}

={(RSSI1, SinceStart1, Antenna1), . . . , (RSSIn, SinceStartn, Antennan)}.

On this basis the following types of attributes can be distinguished:

Domain Attributes These are characterizations of moved and static pallets mainly based on

the manual observation of pallet loadings in the distribution center. Depending on the

type of low-level reader data used they have different denominations.

RSSI Attributes These attributes are intuitive aggregations of the RSSI values. For

example, the maximum signal strength a tag has been read with is defined as:

RSSIMax := max{RSSI1, . . . , RSSIn}

SinceStart Attributes These attributes are intuitive aggregations of the SinceStart val-

ues. For example, the time since the beginning of the gathering-cycle that passed

before a tag is first detected is defined as:

ReadFirst := min{SinceStart1, . . . , SinceStartn}

Antenna Attributes These attributes are intuitive aggregations of the Antenna values.

For example, the number of detections involving antenna 1 is defined as:

AntCount1 := |{Antennai|1 ≤ i ≤ n ∧ Antennai = 1}|
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Artificial Attributes These characterizations are automatically derived using a sequence of

operators on arbitrary Domain Attributes. In contrast to the latter they do not have an

intuitive semantic. For example, an artificial attribute A could be defined as:

A :=
RSSIMax

RSSIMean
+
√
RSSIMin

where RSSIMean and RSSIMin denote the average and the minimum received signal

strength during that gathering-cycle.

Logical Reader Attributes These characterizations describe the order in which a tag was read

by different readers of the same portal. Because only Satellite- and Transition Portals

have multiple readers, these attributes are not available at the Standard Portals.

Time-Series Attributes These characterizations describe the development of the signal strength

over the period of a gathering-cycle. Generally, it is examined whether this development

is more typical of a moved or of a static tag.

As stated previously, two different approaches, Tag-Occurrence Level Classification and Tag-

Event Level Classification are proposed in this thesis to discriminate between moved and static

tags. The particular difference between these two lies in the type of attributes they use and

the way they are ultimately calculated. Considering the above attributes it will become clear

in the following sections that the underlying calculations of Domain-, Artificial- and Logical

Reader Attributes are very similar. Furthermore they are all based on the same idea of cal-

culating specific aggregation functions over the entirety the individual tag-events, i.e., on the

tag-occurrences. Consequently, these attributes types are pooled in the Tag-Occurrence Level

Approach. The Time-Series Attributes on the other hand, are pooled in the Tag-Event Level

Approach.

In the following sections a list of attributes for each of the above attribute types is pre-

sented. Furthermore, the underlying rationale is described and their principal applicability

for classification purposes is discussed. The analysis is based on the descriptive statistics of

the collected sample data in the relevant data sets shown in Table 4.8. Because the different

portal types have different readers it is furthermore necessary to distinguish between them, so

all affected attributes are indexed by the corresponding reader DC, Main or Truck where the

tag-events occurred (e.g., RSSIMax,Main for the maximum signal strength measured by the

Main Antennas).

The above attributes can be of either numerical- or nominal type and thus need to be exam-

ined in different ways. Numerical attributes can be investigated by calculating the minimum,
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maximum and average attribute value of each attribute together with the standard deviation.

This is done for both moved and static tags and all four data sets. These measures are shown

in Figure 5.3 where the distribution of the average RSSI values is depicted for both moved

and static tags monitored at the Standard Portals. Note that the minimum and maximum

attribute values shown in this Figure do not represent the absolute minima and maxima, as

due to outliers or incorrectly monitored pallets the respective minima and maxima for moved

and static tags are the same or at least very close to each other. Consequently, the attribute

value a is chosen as the minimum representative where 99% of the values lie above it and the

attribute value b where 99% of the values lie below it is chosen as the maximum value. In

descriptive statistics, a and b are often called the 1st and the 99th percentile, respectively.
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Figure 5.3.: Example Numerical Attribute Investigation

Because nominal attributes have by definition a discrete value space, the investigation can

be carried out without using the above statistical measures. The whole distribution can easily

be presented in a way similar to the confusion matrices described in section 3.3.1.3 on page 41.

Table 5.1 shows an example investigation of a nominal attribute called SeenFirst correspond-

ing to the specific reader that first sees a tag at the Transition Portals. The values shown there

can be interpreted as follows: 1,191 of all moved tags were seen first by the DC Antennas and

1,370 of all static tags were seen first by the Truck Antennas, this corresponds to a moved

detection rate of 91.7% and a static detection rate of 57.3%. The confidence of classifying a

tag correctly (i.e., the classification precision) is 53.8% if it was first seen by the DC Antennas

and 92.7% if was seen first by the Truck Antennas.
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Table 5.1.: Example Nominal Attribute Investigation

Attribute Value Moved Tags Static Tags Precision

SeenFirst DC 1,191 1,022 53.8%

Truck 108 1,370 92.7%

Recall 91.7% 57.3%

5.2. Tag-Occurrence Level Classification

Tag-occurrence Level Classification is the first approach presented in this thesis to identify

meaningful attributes that can be used to discriminate between moved and static RFID tag

reads. As stated above, these attributes can be separated into disjunctive subgroups denomi-

nated Domain-, Artificial- and Logical Reader Attributes. In the following sections the different

attributes belonging to each of the groups are identified, described and investigated.

5.2.1. Domain Attributes

Domain Attributes are derived from the experience and knowledge of people working in the

environment under consideration. For example, if we talk to a warehouseman and ask him

about the difference between moved and static pallets, he might answer that the first get closer

to the RFID antennas than the latter do. Based on this information and the characteristics

of the RSSI data we would then conclude that the maximum RSSI value measured during a

gathering-cycle poses a valuable attribute to distinguish moved and static pallets because the

first are expected to show a higher attribute value than the latter.

5.2.1.1. RSSI Attributes

In accordance with the above explanations, a tag-occurrence T can be described as a sequence

of individual tag-events:

T = {(RSSI1, SinceStart1, Antenna1), . . . , (RSSIn, SinceStartn, Antennan)}

where n is the number of tag-events. Calculation of the RSSI Attributes is based on the

unordered set of the corresponding RSSI values:

{RSSI1, . . . , RSSIn}
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The main point behind the definition of these attributes is the observation that many static

pallets are further away from antennas than moved pallets are. Because the received signal

strength indication depends on the distance between sender and receiver it is expected that the

RSSI Attributes are able to successfully map this insight and that they play a major role in

being able to discriminate between moved and static tags.

RSSIMin The minimum signal strength measured during a gathering-cycle. Because at the

beginning of the pallet loading process both moved and static tags can be far away from

the antennas, no significant differences in the minimum signal strength were expected.

However, it was found that moved pallets seem to have a slightly higher minimum RSSI

value than static pallets do.

RSSIMin := min{RSSI1, . . . , RSSIn}

RSSIMax The maximum signal strength measured during a gathering-cycle. Because moved

pallets pass the portal and therefore have a smaller distance to the antennas at this time,

they are expected to have a higher maximum RSSI value.

RSSIMax := max{RSSI1, . . . , RSSIn}

RSSIDiff The difference between the highest and lowest signal strength that was measured

during a gathering-cycle. The value range is a dispersion measure of the RSSI values. Be-

cause moved pallets continuously change their distance to the antennas they are expected

to have a higher dispersion and thus a higher RSSIDiff attribute value than static tags.

RSSIDiff := RSSIMax −RSSIMin

RSSIMean The average signal strength measured during a gathering-cycle. Because moved

pallets spend more time closer to the antennas while they pass the portal it is expected

that they have a higher average RSSI value than static pallets.

RSSIMean :=

(
n∑

i=1

RSSIi

)
· 1

n
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RSSIStDev The standard deviation of the RSSI values. Similar to RSSIDiff this is a disper-

sion measure and therefore a higher attribute value is expected for moved pallets than

for static pallets.

RSSIStDev :=

√√√√ n∑
i=1

(RSSIi −RSSIMean)2

RSSICoV The coefficient of variation of the RSSI values, it is defined as the ratio between

standard deviation and the average RSSI value. The mathematical expression can be

converted to a form that solely depends on the RSSIMean attribute. Because this is

expected to take on higher values for moved pallets the coefficient of variation is expected

to be lower for these than for static pallets.

RSSICoV :=
RSSIStDev

RSSIMean
=

√√√√ n∑
i=1

(
RSSIi

RSSIMean
− 1

)2

Table 5.2 shows the minimum, maximum, average and standard deviation of the RSSI at-

tribute values for moved and static tags monitored at the Standard Portals. It is notable that

moved tags are usually read with a significantly higher signal strength, as was expected. Conse-

quently, RSSIMax and RSSIMean take on higher values for moved tags than for static tags. It

was also expected that moved tags are subject to a higher variance in the signal strength. This

also holds true because the attributes RSSIDiff and RSSIStDev, as a measure of variance, take

on considerably lower values for static tags. The minimum received signal strength, denoted as

RSSIMin, does not show much divergence, as was also expected. However, another significant

difference can be observed by examining the coefficient of variation. This attribute tends to be

0 for many static tags and is much lower for moved tags.

Table 5.3 shows the RSSI attribute values for moved and static tags monitored at the Satel-

lite Portals that have been read only by the Main Antennas. It can be seen that the above

expectations hold true also for this data set. Moved tags are read with a higher minimum, max-

imum and average signal strength than static tags. The standard deviation and the RSSIDiff

attribute prove that static tags also have a lower signal strength variance than moved tags.

Table 5.4 shows the RSSI attribute values for moved and static tags monitored at the Satellite

Portals that have been read by both Main- and Truck Antennas. Considering the attribute

values that correspond to the Main Antennas it becomes clear that the above expectations still

hold true. Moved tags are read by these antennas with higher minimum, maximum and average

signal strengths than static tags. The standard deviation and the RSSIDiff attribute prove
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Table 5.2.: RSSI Attribute Values (STD COMPLETE Data Set)

Attribute Moved Tags Static Tags

Min Max Avg SD Min Max Avg SD

RSSIMin,Main -68.6 -53.4 -62.8 2.9 -69.4 -57.0 -63.8 2.4

RSSIMax,Main -56.5 -38.3 -44.1 4.2 -66.6 -47.3 -59.1 4.0

RSSIDiff,Main 2.9 27.5 18.7 5.2 0.0 16.7 4.7 4.0

RSSIMean,Main -60.7 -46.0 -54.1 3.0 -67.4 -54.2 -61.5 2.6

RSSIStDev,Main 1.0 8.5 5.3 1.6 0.0 4.4 1.4 1.1

RSSICoV,Main -0.164 -0.018 -0.100 0.031 -0.077 0.000 -0.023 0.018

Table 5.3.: RSSI Attribute Values (SAT MAIN ONLY Data Set)

Attribute Moved Tags Static Tags

Min Max Avg SD Min Max Avg SD

RSSIMin,Main -67.8 -50.7 -62.7 3.0 -66.9 -58.5 -63.4 1.8

RSSIMax,Main -55.6 -38.3 -43.8 4.2 -65.9 -50.3 -59.5 3.5

RSSIDiff,Main 2.0 26.6 18.9 5.6 0.0 14.0 3.9 3.5

RSSIMean,Main -60.8 -45.6 -54.4 3.0 -66.0 -56.2 -61.5 2.1

RSSIStDev,Main 0.8 8.6 5.4 1.7 0.0 3.6 1.2 0.9

RSSICoV,Main -0.165 -0.015 -0.101 0.034 -0.061 0.000 -0.020 0.016

that the latter also have a lower signal strength variation than moved tags. Looking at the

attribute values that correspond to the Truck Antennas, the same observations can be made.

However, the differences between static and moved tags in this situation are considerably less

significant. Although the Main Antennas of the Satellite Portals are identical to the Main

Antennas at the Standard Portals a slight variation can be observed due to the different tag

populations they represent. Table 5.3 shows tags that were detected only by the Main Antennas,

Table 5.4 shows the tags that are detected as moved by both Main and Truck Antennas and

finally Table 5.2 shows some kind of average of these two tag types because using Standard

Portals it is not possible for it to differ between the other cases due to the lack of the Truck

Antennas.
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Table 5.4.: RSSI Attribute Values (SAT MAIN TRUCK Data Set)

Attribute Moved Tags Static Tags

Min Max Avg SD Min Max Avg SD

RSSIMin,Main -66.3 -50.6 -61.0 3.3 -66.7 -54.2 -61.8 2.7

RSSIMax,Main -54.5 -38.3 -43.1 3.8 -65.1 -44.3 -58.1 4.0

RSSIDiff,Main 3.7 26.0 17.9 4.7 0.0 15.2 3.7 3.7

RSSIMean,Main -58.8 -44.4 -51.7 3.2 -65.3 -50.7 -59.9 2.9

RSSIStDev,Main 1.3 8.6 5.3 1.5 0.0 4.8 1.3 1.2

RSSICoV,Main -0.168 -0.026 -0.104 0.030 -0.087 0.000 -0.023 0.021

RSSIMin,Truck -64.9 -53.6 -60.7 2.3 -65.4 -50.4 -61.1 2.9

RSSIMax,Truck -58.6 -38.4 -45.2 4.6 -62.9 -42.1 -53.4 4.7

RSSIDiff,Truck 1.0 24.2 15.5 5.0 0.0 19.0 7.7 4.4

RSSIMean,Truck -59.8 -44.9 -52.2 3.3 -63.2 -45.5 -56.9 3.7

RSSIStDev,Truck 0.6 7.1 4.1 1.3 0.0 4.9 1.9 1.1

RSSICoV,Truck -0.147 -0.010 -0.080 0.028 -0.095 0.000 -0.034 0.020

Table 5.5 shows the RSSI attribute values for moved and static tags monitored at the Transi-

tion Portals. Considering the attribute values that correspond to the DC Antennas it becomes

clear that the above expectations hold true. Moved tags are read by these antennas with higher

minimum, maximum and average signal strengths than static tags. The standard deviation and

the RSSIDiff attribute prove that the latter also have a lower signal strength variation than

moved tags. Considering the attribute values that correspond to the Truck Antennas, the same

observations can be made. However, the differences between static and moved tags are some-

what less significant. In contrast to Standard- and Transition Portals it is notable that the

minimum signal strength appears to be more meaningful while the maximum signal strength

and the standard deviation become less expressive.
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Table 5.5.: RSSI Attribute Values (TRA BOTH Data Set)

Attribute Moved Tags Static Tags

Min Max Avg SD Min Max Avg SD

RSSIMin,DC -65.8 -48.8 -59.8 3.6 -66.4 -53.9 -62.0 2.6

RSSIMax,DC -58.1 -38.3 -43.6 4.7 -65.1 -39.3 -56.4 5.5

RSSIDiff,DC 0.0 25.5 16.1 5.6 0.0 21.3 5.6 5.4

RSSIMean,DC -60.4 -43.0 -50.7 3.7 -65.2 -46.3 -59.1 3.7

RSSIStDev,DC 0.0 8.5 4.7 1.7 0.0 5.9 1.7 1.4

RSSICoV,DC -0.172 0.000 -0.094 0.035 -0.115 0.000 -0.030 0.027

RSSIMin,Truck -66.0 -49.4 -59.9 3.8 -66.2 -50.4 -60.3 3.8

RSSIMax,Truck -56.6 -38.3 -43.4 4.3 -64.6 -40.3 -51.7 5.6

RSSIDiff,Truck 1.1 25.8 16.5 5.7 0.0 21.9 8.6 5.6

RSSIMean,Truck -59.0 -44.1 -51.5 3.3 -64.9 -45.9 -55.8 4.3

RSSIStDev,Truck 0.6 8.0 4.6 1.6 0.0 6.0 2.3 1.4

RSSICoV,Truck -0.159 -0.010 -0.090 0.031 -0.118 0.000 -0.042 0.027

5.2.1.2. SinceStart Attributes

On the basis of a tag-occurrence

T = {(RSSI1, SinceStart1, Antenna1), . . . , (RSSIn, SinceStartn, Antennan)}

encompassing n individual tag-events, calculation of the SinceStart Attributes is based on the

unordered set of the corresponding SinceStart values:

{SinceStart1, . . . , SinceStartn}

The main point behind the definition of these attributes is the insight that certain static

pallets are detected only occasionally. For example, some false-positive reads are the result of

unexpected reflections that occur only randomly. In contrast to moved pallets these are not

expected to be read over the entire period of a gathering-cycle.
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ReadFirst The time since the beginning of the gathering-cycle that passed before the tag is

first read. Moved pallets are typically read from the very beginning, while certain false-

positives are detected only after a couple of seconds.

ReadFirst := min{SinceStart1, . . . , SinceStartn}

ReadLast The time since the beginning of the gathering-cycle that passed before the tag is

last read. At the end of a gathering-cycle basically any type of pallet may be read due to

electromagnetic reflections. Consequently, the time stamps of the last tag answer are not

expected to differ much. However, this attribute might be helpful in combination with

another one.

ReadLast := max{SinceStart1, . . . , SinceStartn}

ReadDiff The time that has passed between the first and the last detection of the tag. Because

moved pallets are often read at the beginning as well as at the end of a gathering-cycle,

this attribute is expected to take on higher values for moved than for static tags.

ReadDiff := ReadLast −ReadFirst

Table 5.6 shows the minimum, maximum, average and the standard deviation of the SinceStart

attribute values for moved and static tags monitored at the Standard Portals. Investigation of

the ReadFirst attribute reveals that on average moved tags are read around 0.7 seconds sooner

than static tags are. The maximum value of this attribute indicates that 99% of the moved

tags were first detected within 2.43 seconds, while this percentage is reached only after 7.41

seconds for the static tags. As it was expected, theReadLast attribute does not appear to carry

much information on its own. Looking at the SinceStartDiff attribute, it can be seen that

on average moved tags are seen over a period of 3.32 seconds while static tags are seen for

only 2.61 seconds, which is 0.71 seconds less. The minimum value of this attribute indicates

that 99% of the moved tags are seen over a period of at least 0.29 seconds. The value of 0.00

for the static tags implies that these are often seen only during a very short time window or

for a single instance, resulting in a SinceStartDiff value of 0 by definition. Table 5.7 shows

the SinceStart attribute values for moved and static tags monitored at the Satellite Portals

that were read only by the Main Antennas. As expected these values do not differ much from

the values observed at the Standard Portals. However, on average the last tag detection of

moved tags occurs after 3.82 seconds while static tags are on average read last 0.4 seconds
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Table 5.6.: SinceStart Attribute Values (STD COMPLETE Data Set)

Attribute Moved Tags Static Tags

Min Max Avg SD Min Max Avg SD

ReadFirst,Main 0.03 2.43 0.38 0.63 0.03 7.41 1.10 1.45

ReadLast,Main 1.06 9.98 3.70 1.90 0.22 9.99 3.71 2.59

ReadDiff,Main 0.29 9.93 3.32 2.02 0.00 9.94 2.61 2.77

sooner, namely after 3.43 seconds. This effect could not be observed at the Standard Portals

at all. Furthermore, most of the differences between moved and static tags are considerably

more significant. For example, in this data set moved tags are seen for 1.22 seconds longer

than static tags on average (3.48s vs. 2.26s) which is an increase of almost 0.5 seconds. Table

Table 5.7.: SinceStart Attribute Values (SAT MAIN ONLY Data Set)

Attribute Moved Tags Static Tags

Min Max Avg SD Min Max Avg SD

ReadFirst,Main 0.03 2.32 0.33 0.56 0.03 7.43 1.17 1.49

ReadLast,Main 0.99 9.99 3.82 2.08 0.21 9.99 3.43 2.57

ReadDiff,Main 0.18 9.93 3.48 2.23 0.00 9.92 2.26 2.68

5.8 shows the SinceStart attribute values for moved and static tags monitored at the Satellite

Portals that were read by both Main- and Truck Antennas. Looking at the Main Antennas,

not much difference from the above two cases can be observed, except that the last detection of

99% of the moved tags occurs within the first 2.96 seconds of a gathering-cycle in this data set.

Furthermore, moved tags are read over an average period of 2.61 seconds which is significantly

less when compared to the observations made above. Looking at the Truck Antennas it can be

seen that moved tags are seen for the first time after 1.48 seconds on average compared to static

tags that are seen for the first time after 0.72 seconds. Furthermore, on average static tags

are read over a longer period of time (4.65 seconds) compared to moved tags (3.37 seconds).

It can be assumed that these static tags are mainly tags that were loaded inside the container

already. Table 5.9 shows the SinceStart attribute values for moved and static tags monitored at
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Table 5.8.: SinceStart Attribute Values (SAT MAIN TRUCK Data Set)

Attribute Moved Tags Static Tags

Min Max Avg SD Min Max Avg SD

ReadFirst,Main 0.03 2.95 0.35 0.65 0.03 8.42 1.37 1.73

ReadLast,Main 0.78 9.81 2.96 1.74 0.10 9.99 3.48 2.71

ReadDiff,Main 0.33 9.71 2.61 1.79 0.00 9.87 2.11 2.64

ReadFirst,T ruck 0.03 5.04 1.48 1.07 0.02 5.77 0.72 1.34

ReadLast,T ruck 1.52 10.00 4.85 2.01 0.79 10.00 5.37 2.76

ReadDiff,Truck 0.07 9.80 3.37 2.11 0.00 9.97 4.65 3.07

the Transition Portals that have been read by both DC- and Truck Antennas. Looking at the

DC Antennas it can be seen that some attribute values differ significantly for moved and static

tags. For example, the maximum of the ReadFirst,DC attribute reveals that 99% of the static

tags are seen for the first time within 8.01 seconds after the start of the gathering-cycle but

99% of the moved tags are seen first within 3.34 seconds. Furthermore, they are last read after

an average 4.18 seconds, which is 1.01 seconds after the moved tags (3.17 seconds). Looking

at the Truck Antennas it is notable that on average the static tags can still be detected after

moved tags (5.41s vs. 4.98s) and that they are read over a longer period of time (4.50s vs.

3.99s).

Table 5.9.: SinceStart Attribute Values (TRA BOTH Data Set)

Attribute Moved Tags Static Tags

Min Max Avg SD Min Max Avg SD

ReadFirst,DC 0.03 3.34 0.19 0.59 0.03 8.01 1.10 1.55

ReadLast,DC 0.48 9.99 3.17 2.18 0.11 10.00 4.18 2.95

ReadDiff,DC 0.00 9.93 2.99 2.19 0.00 9.94 3.09 3.11

ReadFirst,T ruck 0.03 4.80 0.99 0.94 0.03 6.72 0.91 1.49

ReadLast,T ruck 1.61 9.99 4.98 1.99 0.38 10.00 5.41 2.69

ReadDiff,Truck 0.15 9.81 3.99 2.10 0.00 9.94 4.50 3.14
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5.2.1.3. Antenna Attributes

On the basis of a tag-occurrence

T = {(RSSI1, SinceStart1, Antenna1), . . . , (RSSIn, SinceStartn, Antennan)}

encompassing n individual tag-events, calculation of the Antenna Attributes is based on the

unordered set of the corresponding Antenna values:

{Antenna1, . . . , Antennan}

The main point behind the definition of these attributes is the same insight that lead to the

definition of the SinceStart Attributes, namely that certain static pallets are detected only

occasionally. Thus, it is expected in general that a moved tag is detected more often and by

more antennas than a static tag.

Countx The number of tag-events that were recorded by each of the antennas, where x is the

identifier of the corresponding antenna. Because many static tags are close to specific

antennas it is expected that certain antennas will detect these tags more often than they

detect the moved tags.

Countx := |{Antenna1, . . . , Antennan|Antennai = x ∧ 1 ≤ i ≤ n}|

AntCount The number of antennas that were able to detect the tag. Because many static

tags are close to specific antennas it is expected that moved pallets are read by more

antennas than static tags are.

AntCount := |{Countx|Countx > 0}|

Count The total number of answers the tag gave to all of the antennas together. Because

moved tags pass the portal and are thus very close to the antennas it is expected that

they are read more often in total than static tags are.

Count :=

x∑
i=1

Countx

Table 5.10 shows the Antenna attribute values for moved and static tags monitored at the

Standard Portals. It is notable that the number of tag detections significantly differs with

respect to the specific antenna and furthermore with respect to moved and static tags. For
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example an average moved tag is detected 24.3 times by antenna 1 but only 5 times by antenna

4. Furthermore, moved tags are detected by antennas 1 and 2 significantly more often than

static tags (24.3 vs. 8.4 and 10.5 vs. 4.2).

Table 5.10.: Antenna Attribute Values (STD COMPLETE Data Set)

Attribute Moved Tags Static Tags

Min Max Avg SD Min Max Avg SD

Count1,Main 0.0 117.0 24.3 21.7 0.0 118.0 8.4 20.3

Count2,Main 0.0 59.0 10.5 13.3 0.0 74.0 4.2 14.1

Count3,Main 0.0 56.0 7.0 11.8 0.0 65.0 4.1 13.4

Count4,Main 0.0 56.0 5.0 11.4 0.0 76.0 4.4 14.8

AntCountMain 1.0 4.0 3.2 0.9 1.0 4.0 1.8 1.0

CountMain 4.0 195.0 46.8 39.9 1.0 161.0 21.0 33.9

The reason for these heterogeneous attribute values can be found in the antenna configuration.

As stated in Section 4.2.1 antennas 1 and 2 are located at the bottom of the portal, while

antennas 3 and 4 are installed on at the top. When a pallet moves through the portal it covers

the lower antennas, while the top antennas still have a free line-of-sight to register arbitrary

static pallets. This distinction does hold true, because in the table it can be seen that the top

antennas detect static tags more often than they detect moved tags. It is notable furthermore,

that the maximum number of tag reads per antenna is higher for static than for moved tags,

but the average number of tag reads at the specific antennas is higher for the latter. The

reason for this is that often a pallet is placed directly next to an antenna and is consequently

read by it almost right through the gathering-cycle. However, many other static pallets are

out of read range of that specific antenna and consequently are never read by it. Thus, the

maximum number of reads can be much higher for static tags but this effect is cancelled out

when averaging over all static tags including the ones that never read by the antenna. Another

very important piece of information in this table is the Count attribute which tells that moved

tags are detected an average 46.8 times which is significantly more often compared to static tags

that are detected only 21 times on average. Furthermore, moved tags are detected on average

by 3.2 antennas compared to static tags that are detected on average by only 1.8 antennas.
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Table 5.11 shows the Antenna attribute values for moved and static tags monitored at the

Satellite Portals that were detected only by the Main Antennas. Compared to the values of

the Standard Portal attributes some differences can be observed. On average moved tags are

detected by antenna 1 more often, but by antennas 2, 3 and 4 less often. Static tags are detected

by all antennas less often on average and the total number of average detections drops from

21.0 to 15.5 while this attribute value remains almost constant for the moved tags (46.8 vs.

45.4 detections).

Table 5.11.: Antenna Attribute Values (SAT MAIN ONLY Data Set)

Attribute Moved Tags Static Tags

Min Max Avg SD Min Max Avg SD

Count1,Main 0.0 92.4 27.2 21.2 0.0 83.3 6.3 15.5

Count2,Main 0.0 40.5 9.0 10.2 0.0 28.3 1.9 8.1

Count3,Main 0.0 32.0 6.3 7.6 0.0 44.3 2.8 9.8

Count4,Main 0.0 19.8 2.8 8.0 0.0 84.3 4.5 15.8

AntCountMain 1.0 4.0 3.2 1.0 1.0 4.0 1.6 0.9

CountMain 4.0 140.1 45.4 27.8 1.0 137.0 15.5 25.3

Table 5.12 shows the Antenna attribute values for moved and static tags monitored at the

Satellite Portals that were detected by both Main- and Truck Antennas. Looking at the Main

Antennas it can be observed that both moved and static tags are read less often on average

at either antenna and also in total (CountMain attribute). Looking at the Truck Antenna

attributes it can seen that these read both types of tags significantly more often. However,

Truck Antenna 6 in particular reads static pallets even more often than it does moved pallets.

Furthermore it is notable that moved tags are read more often than static pallets by the Main

Antennas (CountMain), but less often than static tags by the Truck Antennas (CountTruck).

In total though, moved tags are still detected more often than static tags (CountTotal).
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Table 5.12.: Antenna Attribute Value Distribution (SAT MAIN TRUCK Data Set)

Attribute Moved Tags Static Tags

Min Max Avg SD Min Max Avg SD

Count1,Main 0.0 61.0 16.0 12.1 0.0 51.0 3.8 9.4

Count2,Main 0.0 28.0 6.0 7.3 0.0 24.0 1.7 5.5

Count3,Main 0.0 18.0 3.5 5.0 0.0 26.0 1.7 5.2

Count4,Main 0.0 14.0 2.6 3.2 0.0 30.0 1.8 5.5

Count5,T ruck 0.0 154.0 34.8 31.4 0.0 200.0 29.1 43.5

Count6,T ruck 0.0 82.1 14.7 18.8 0.0 227.0 31.5 46.9

AntCountMain 1.0 4.0 3.2 0.9 1.0 4.0 1.6 0.9

AntCountTruck 1.0 2.0 1.7 0.5 1.0 2.0 1.5 0.5

AntCountTotal 2.0 6.0 4.9 1.2 2.0 6.0 3.2 1.0

CountMain 4.0 87.2 28.0 15.5 1.0 75.0 8.9 14.7

CountTruck 2.0 198.1 49.5 36.1 1.0 251.0 60.6 56.8

CountTotal 12.0 240.0 77.5 41.0 3.0 262.0 69.5 58.7

Table 5.13 shows the attribute values for moved and static tags monitored at the Transition

Portals that have been read by both DC- and Truck Antennas. Looking at the DC Antennas it

can be seen that only antennas 1 and 2 show significantly different values for moved and static

tags. However, on average moved tags are still seen by more antennas and more often in total.

Looking at the maximum values of the Truck Antenna attributes it becomes obvious that these

four antennas read static tags more often than they do moved tags.

5.2.2. Artificial Attributes

As has been shown in the previous section, some domain attributes are likely suitable can-

didates for classifying moved and static pallets. However, in many cases Domain Attributes

alone do not lead to sufficiently acceptable classification rates. A common approach to overcome

this problem is to construct additional Artificial Attributes derived from the available Domain

Attributes [Kam09, SP06] using unary or binary mathematical operations. The Artificial At-

tribute generation procedure comprises two distinct phases denoted Attribute Generation and

Attribute Evaluation.
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Table 5.13.: Antenna Attribute Value Distribution (TRA BOTH Data Set)

Attribute Moved Tags Static Tags

Min Max Avg SD Min Max Avg SD

Count1,DC 0.0 100.2 12.0 16.9 0.0 94.2 6.9 16.9

Count2,DC 0.0 59.1 7.1 12.1 0.0 88.1 5.0 14.6

Count3,DC 0.0 25.0 4.1 7.1 0.0 51.1 3.6 10.0

Count4,DC 0.0 21.0 3.4 4.5 0.0 38.0 3.0 8.2

Count5,T ruck 0.0 66.0 15.8 15.2 0.0 99.2 13.5 21.2

Count6,T ruck 0.0 40.0 6.9 8.9 0.0 71.0 6.3 14.3

Count7,T ruck 0.0 37.0 7.8 9.5 0.0 85.1 7.8 15.9

Count8,T ruck 0.0 26.0 5.5 6.1 0.0 60.2 5.6 12.1

AntCountDC 1.0 4.0 2.9 1.0 1.0 4.0 1.8 1.0

AntCountTruck 1.0 4.0 3.1 1.0 1.0 4.0 2.3 1.1

AntCountTotal 2.0 8.0 6.0 1.7 2.0 8.0 4.1 1.5

CountDC 1.0 146.1 26.6 22.7 1.0 140.0 18.4 29.2

CountTruck 2.0 108.0 36.0 21.5 1.0 137.1 33.1 31.8

CountTotal 9.0 175.0 62.5 31.8 2.0 173.2 51.6 39.0

5.2.2.1. Attribute Generation

In the first step, a sequence of mathematical operators is repeatedly applied to the Domain At-

tributes to create new combinations. The operators can be separated into two different groups,

namely Binary Operators (Table 5.14) and Unary Operators (Table 5.15). The first group

takes two different Domain Attributes, A1 and A2, as input and generates a new attribute by

applying the corresponding operator. The attribute generation algorithm would, for example,

at some point combine the Count attribute with the ReadDiff attribute using the division

operator:

Attribute1 =
ReadDiff

Count

This attribute has not been thought of before when identifying the Domain Attributes. The

meaning of this new, artificial attribute can be interpreted as “the average time between two

different tag reads”. Although this attribute appears to be quite reasonable at first sight,

the semantic of an artificial attribute can be determined only in very few cases. Like in the
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Table 5.14.: Binary Attribute Generation Operators

Operator Attribute Construction

Addition AttributeNew = A1 + A2

Subtraction AttributeNew = A1 − A2

Multiplication AttributeNew = A1 · A2

Division AttributeNew = A1

A2

Hypothenuse AttributeNew =
√

(A1)2 + (A2)2

motivating example above, where two different attributes were combined, it is also possible to

influence the suitability of a single Domain Attribute, A, to classify moved and static tags by

altering its attribute value space. This is done by the use of one of the unary operators shown

in Table 5.15.

Table 5.15.: Unary Attribute Generation Operators

Operator Attribute Construction

Sine AttributeNew = sinA

Cosine AttributeNew = cosA

Tangent AttributeNew = tanA

Square Root AttributeNew =
√
A

Weighting AttributeNew = A · n, n ∈ N

Reciprocal AttributeNew = 1
A

Logarithm AttributeNew = logA

Exponential Function AttributeNew = eA

Power Function AttributeNew = Ax, x ∈ N
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If unary and binary operators are combined, then a number of new attributes are created

similar to the following:

Attribute2 = sin
√

(RSSIDiff ) + (RSSIMax)

These have been created by a sequence of unary operators (sin-function and taking the square

root) as well as one binary operator (addition). The effect of these operations is shown in Figure

5.4. Figures 5.4(a) and 5.4(b) depict the attribute value distributions of the two underlying
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Domain Attributes that were used to create Attribute2 i.e., RSSIDiff and RSSIMax. The

distribution of the RSSIDiff attribute values of the individual distributions of moved and

static tags resemble two gaussian distributions. Another important piece of information in this

histogram is the remarkable number of static tags that have a RSSIDiff attribute value of 0

(other than depicted this corresponds to more than 9000 static tags and not only 3000, this

was done for presentation purposes only). This is because it turns out that a large number of

static tags responded only a single time to the reader thus having a RSSI difference of 0 by

definition. The distribution of the maximum RSSI values shows a similar behavior, although

due to quantization effects the two gaussian distributions don’t appear to be as smooth.

Figure 5.4(c) shows the distribution of attribute Attribute2 which has been created using

these two Domain Attributes (similar to Figure 5.4(a) the maxima have been cut for presenta-

tion purposes). The important information in this figure is that the distribution of moved and

static tags does not resemble a Gaussian distribution anymore and the set of tags having an

RSSI standard deviation of 0 has been smoothed. Furthermore, while the maxima of the two

distributions previously lay pretty close to each other with respect to the Domain Attributes,

this effect has been eliminated as moved tags now cluster at the minimum value of Attribute2

and static tags cluster at the maximum value of Attribute2. It is notable that a distribution

similar to the sample artificial attribute cannot be observed for any of the Domain Attributes

already introduced.

5.2.2.2. Attribute Evaluation

The attribute generation procedure provides us with a large number of attributes, of which only

a small fraction are actually helpful for distinguishing moved and static tags. For example, if

only 4 unary and 4 binary operators are used to combine 5 different Domain Attributes, this

results in

(5 · 5)2 · 4 = 2, 500

new attributes. One additional application of the operators to these attributes gives us an

additional

(((5 · 5)2 · 4)2) · 4 = 25, 000, 000

new attributes. In order to reduce the complexity for building the classification model it

becomes necessary to reduce the number of attributes to a manageable quantity [Bel61, CFZ09].

It is understood that one tries to keep the best attributes and discard the useless ones. At
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this point, a quality measure definition is needed to evaluate how good an attribute is and

when to favor an attribute over another. In Section 5.1.3 Entropy and Information Gain were

introduced as the C4.5’s method to evaluate the quality of an attribute. Because this is well

known and proven to be useful [GH07], it is also the method of choice for the artificial attribute

evaluation. The Information Gain is calculated for every artificial attribute with only the 500

with the highest gain being kept; the rest are discarded.

5.2.3. The Tag-Occurrence Count

Observations at the METRO distribution center in Unna have shown that pallets which have

already been seen in a preceding gathering-cycle (at the same portal) were static most of the

time. Consequently, an attribute that counts the number of previous occurrences of the pallets,

called TOCount, is introduced which corresponds to the number of gathering-cycles in which a

tag has been seen before, including the current one. If a tag is seen for the first time, then it

is called a first-sight (FS), otherwise it is called a non first-sight (NFS). Table 5.16 shows the

distribution of moved and static tags in the relevant sample data sets based on the TOCount

values. It can be seen that the initial assumption holds true. At either portal, at least 90% of

Table 5.16.: Tag Distribution based on Tag-Occurrence Count

Data Set TOCount Moved Tags Static Tags Precision

STD COMPLETE
First-Sights 11,835 3,065 79.4%

Non First-Sights 1,410 37,678 96.4%

Recall 89.4% 92.5%

SAT MAIN ONLY
First-Sights 567 89 86.4%

Non First-Sights 268 2,303 89.9%

Recall 67.9% 96.3%

SAT MAIN TRUCK
First-Sights 1,081 201 84.3%

Non First-Sights 67 1,832 96.5%

Recall 94.2% 90.1%

TRA BOTH
First-Sights 1,172 127 90.2%

Non First-Sights 181 2,211 92.4%

Recall 86.6% 94.6%
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all static tags were seen in a previous gathering-cycle. In turn, at around 90% of all moved tags

had not been seen before (except for the tags monitored at the Satellite Portals). With respect

to the question of how confident a classification using this attribute is, it is notable that only

the Transition Portals reach an accuracy of at least 90% for both values FS and NFS.

5.2.4. Logical Attributes

5.2.4.1. Satellite Portal Logic

Satellite Portals consist of Main- as well as Truck- and DC Antennas as described in Section

4.2.2. Because moved tags pass the portal it is expected that they are read first by the Main-

and subsequently by the Truck Antennas (remember that if they are read by the DC Anten-

nas after the loading then they are classified as static by definition). Accordingly, besides the

definition of an attribute to determine which antennas a tag was read by, a number of addi-

tional characteristics are introduced to map the order at which it was read against meaningful

attributes. From all the possible cases, only the tags read by both Main- and Truck Antennas

are of interest at this point because for tags read only by the Main Antennas no order can be

defined and all other cases are automatically classified as static by definition.

WhereRead This attribute corresponds to the cases defined in Section 4.3.2 and has already

been investigated there.

WhereRead :=



1, if read only by DC Antennas

2, if read only by Main Antennas

3, if read only by Truck Antennas

4, if read by Main-, then by DC Antennas

5, if read by Truck-, then by DC Antennas

6, if read only by Main- and Truck Antennas

7, if read by Main- and Truck-, then by DC Antennas
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SeenFirst This attribute examines the ReadFirst attribute values to determine whether a tag

was seen first by the Main- or by the Truck Antennas. Because in the beginning of a

loading moved tags are not inside the container, then by definition it most likely they are

seen first by the Main Antennas.

SeenFirst :=

Main, if ReadFirst,Main ≤ ReadFirst,T ruck

Truck, otherwise
(5.1)

SeenLast This attribute examines the ReadLast attribute values to determine whether a tag

was last seen by the Main or the Truck Antennas. Because at the end of a loading

the moved as well as some static tags are present inside the container there is no clear

expectation of what is typical for either tag type. Still it is reasonable to consider this

attribute as it might be helpful in combination with another one.

SeenLast :=

Main, if ReadLast,Main ≥ ReadLast,T ruck

Truck, otherwise
(5.2)

SeenLonger This attribute examines the ReadDiff attribute values to determine which reader

the tag has been read by over the longer period of time. Both moved and static tags

are usually read for a longer period of time by the Truck Antennas but there is no clear

expectation of what is typical for moved and static tags. Still it is reasonable to consider

this attribute as it might helpful in combination with another one.

SeenLonger :=

Main, if ReadDiff,Main ≥ ReadDiff,Truck

Truck, otherwise
(5.3)

FirstMainLastTruck This attribute determines whether a tag has first been read by the Main

Antennas and last by the Truck Antennas. It is likely that such a tag is one that moved

through the portal.

FirstMainLastTruck :=

Y es, if SeenFirst = Main and SeenLast = Truck

No, otherwise
(5.4)
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FirstTruckLastMain This attribute determines whether a tag has first been read by the Truck

Antennas and last by the Main Antennas. It is rather unlikely that this happens, but if

it does, then such a tag is likely static.

FirstTruckLastMain :=

Y es, if SeenFirst = Truck and SeenLast = Main

No, otherwise
(5.5)

FirstMainLastMain This attribute determines whether the first and last detection of a tag

occurred at the Main Antennas. It is rather unlikely that this happens, but if it does,

then such a tag is likely a static tag located somewhere in the distribution center (i.e.,

outside of the container).

FirstMainLastMain :=

Y es, if SeenFirst = Truck and SeenLast = Main

No, otherwise
(5.6)

FirstTruckLastTruck This attribute determines whether the first and last detection of a tag

occurred at the Truck Antennas. If this is the case then it is likely that the tag was

already inside the container during the entire gathering-cycle and is thus static.

FirstTruckLastTruck :=

Y es, if SeenFirst = Truck and SeenLast = Main

No, otherwise
(5.7)

DisjointMain,Truck This attribute determines whether a tag has been read only by the Main

Antennas in the beginning and after that only by the Truck Antennas. Because this could

be considered the optimal case for a loaded pallet it is expected that tags for which this

condition holds have been moved through the portal.

DisjointMain,Truck :=

Y es, if ReadLast,Main ≤ ReadFirst,T ruck

No, otherwise
(5.8)

DisjointTruck,Main This attribute determines whether a tag has been read only by the Truck

antennas in the beginning and after that only by the Main Antennas. It is rather unlikely

that this happens, but if it does, then such a tag is likely static.

DisjointTruck,Main :=

Y es, if ReadLast,T ruck ≤ ReadFirst,Main

No, otherwise
(5.9)
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Tables 5.17 and 5.18 show the investigation of the Logical Satellite Attributes. For presen-

tation purposes they have been split into two parts. In Table 5.17 it can be seen that more

than 93% of all moved tags are first seen by the Main- and more than 95% are last seen by

the Truck Antennas - as expected. Because static tags can be located inside the container or

inside the distribution center no clear distinction is possible for these. Both moved and static

tags are seen longer by the Truck Antennas so the SeenLonger attribute appears to be not so

useful. Note that the attribute characteristics

- SeenFirst = Main,

- FirstMainLastTruck = Y es and

- DisjointMain,Truck = Y es

constitute an order in the way that the succeeding attribute further reduces the set of tags

covered by the previous. The same holds true for the attribute characteristics

- SeenFirst = Truck,

- FirstTruckLastMain = Y es and

- DisjointTruck,Main = Y es.

Table 5.17.: Logical Satellite Attribute Value Distribution Part 1

Attribute Value Moved Tags Static Tags Precision

SeenFirst
Main 1,195 629 65.5%

Truck 87 1,270 93.6%

Recall 93.2% 66.9%

SeenLast
Main 53 310 85.4%

Truck 1,229 1,589 56.4%

Recall 95.9% 83.7%

SeenLonger
Main 420 328 56.1%

Truck 862 1,571 64.6%

Recall 67.2% 82.7%
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Table 5.18.: Logical Satellite Attribute Value Distribution Part 2

Attribute Value Moved Tags Static Tags Precision

FirstMainLastTruck
Yes 1,153 499 69.8%

No 129 1,400 91.6%

Recall 89.9% 73.7%

FirstTruckLastMain
Yes 11 180 94.2%

No 1,271 1,719 57.5%

Recall 99.1% 90.5%

FirstMainLastMain
Yes 42 130 75.6%

No 1,240 1,769 58.8%

Recall 96.7% 93.2%

FirstTruckLastTruck
Yes 76 1,090 93.5%

No 1,206 809 59.9%

Recall 94.1% 57.4%

DisjointMain,Truck
Yes 246 256 51.0%

No 1,036 1,643 61.3%

Recall 80.8% 86.5%

DisjointTruck,Main
Yes 0 70 100.0%

No 1,282 1,829 58.8%

Recall 100.0% 96.3%

5.2.4.2. Transition Portal Logic

Transition Portals consist of DC- and Truck Antennas. Because moved tags pass the portal it

is expected that they are read first by the DC- and subsequently by the Truck antennas (if they

are read by only one of them they are classified as static by definition). Consequently, besides

the definition of an attribute to determine at which antennas a tag was read, a number of

additional attributes are introduced to map the order at which it was read against meaningful

attributes.
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WhereRead This attribute corresponds to the cases defined in Section 4.2.3 and was already

investigated there.

WhereRead :=


1, if read only by DC Antennas

2, if read only by Truck Antennas

3, if read by both DC- and Truck Antennas

SeenFirst This attribute examines the ReadFirst attribute values to determine whether a tag

has been seen first in the distribution center or in the truck. Moved tags are usually read

first by the DC antennas and it is expected that tags read first by the Truck Antennas

are static. Calculation is done analogous to Equation 5.1.

SeenLast This attribute examines the ReadLast attribute values to determine whether a tag

has been seen last in the distribution center or in the truck. Moved tags are usually read

last by the Truck Antennas and it is expected that tags read last by the DC Antennas

are static. Calculation is done analogous to Equation 5.2.

SeenLonger This attribute examines the ReadDiff attribute values to determine at which

antennas the tag has been read over the longer period of time. Moved and static tags

are usually read for longer by the Truck Antennas but there is no clear expectation of

what is typical for moved and static tags. Still it is reasonable to consider this attribute

as it might helpful in combination with another one. Calculation is done analogous to

Equation 5.3.

DisjointDC,Truck This attribute determines whether a tag has been read only by the DC

Antennas in the beginning and after that only by the Truck Antennas. It is expected

that such a tag is one that moved through the portal. Calculation is done analogous to

Equation 5.8.

DisjointTruck,DC This attribute determines whether a tag has been read only by the Truck

Antennas in the beginning and after that only by the DC Antennas. It is rather unlikely

that this happens, but if it does, then such a tag is expected to be static. Calculation is

done analogous to Equation 5.9.

FirstDCLastTruck This attribute determines whether a tag has first been read by DC Antennas

and last by the Truck Antennas. It is expected that such a tag is one that moved through

the portal. Calculation is done analogous to Equation 5.4.
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FirstTruckLastDC This attribute determines whether a tag has first been read by the Truck

Antennas and last by the DC Antennas. It is likely that such a tag is static. The

calculation is done analogous to Equation 5.5.

FirstDCLastDC This attribute determines whether the first and last detection of a tag oc-

curred at the DC Antennas. Such a tag is likely a static tag located somewhere in the

distribution center (i.e., outside of the container).

FirstTruckLastTruck This attribute determines whether the first and last detection of a tag

occurred at the Truck Antennas. If this is the case then it is likely that the tag was

already inside the container during the entire gathering-cycle and is thus static.

Tables 5.19 and 5.20 show the investigation of the Logical Transition Attributes. For presen-

tation purposes they have been split into two parts. It can be seen in Table 5.19 that almost

92% of all moved tags are first seen by the DC- and more than 90% are seen last by the Truck

Antennas as it was expected. Because static tags can be located inside the container or in-

side the distribution center no clear distinction is possible for these. Both moved and static

tags are seen longer by the Truck Antennas so the SeenLonger attribute appears to be not

so useful. Note that the attribute characteristics SeenFirst = DC, FirstDCLastTruck = Y es

and DisjointDC,Truck = Y es constitute an order in the way that the succeeding attribute fur-

ther reduces the set of tags covered by the previous. The same holds true for the attribute

characteristics SeenFirst = Truck, FirstTruckLastDC = Y es and DisjointTruck,DC = Y es.

Table 5.19.: Logical Transition Attribute Value Distribution Part 1

Attribute Value Moved Tags Static Tags Precision

SeenFirst
DC 1,191 1,022 53.8%

Truck 108 1,370 92.7%

Recall 91.7% 57.3%

SeenLast
DC 127 732 85.2%

Truck 1,172 1,660 58.6%

Recall 90.2% 69.4%

SeenLonger
DC 367 707 65.8%

Truck 932 1,685 64.4%

Recall 71.7% 70.4%
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Table 5.20.: Logical Transition Attribute Value Distribution Part 2

Attribute Value Moved Tags Static Tags Precision

FirstDCLastTruck
Yes 1,087 581 65.2%

No 212 1,811 89.5%

Recall 83.7% 75.7%

FirstTruckLastDC
Yes 23 291 92.7%

No 1,276 2,101 62.2%

Recall 98.2% 87.8%

FirstDCLastDC
Yes 104 441 80.9%

No 1,195 1,951 62.0%

Recall 92.0% 81.6%

FirstTruckLastTruck
Yes 85 1079 92.7%

No 1,214 1,313 52.0%

Recall 93.5% 54.9%

DisjointDC,Truck
Yes 123 245 66.6%

No 1,176 2,147 64.6%

Recall 90.5% 89.8%

DisjointTruck,DC
Yes 7 96 93.2%

No 1,292 2,296 64.0%

Recall 99.5% 96.0%

5.3. Tag-Event Level Classification

The decision tree approach used a rule based system to identify moved and static pallets on the

tag-occurrence level. If the low-level reader data collected for an RFID tagged pallet exhibits

specific characteristics such as a predetermined maximum RSSI value the decision whether a

pallet has been moved or not can easily be derived. In the end, the decision finding process is a

simple sequence of Yes/No questions that have to be answered. In contrast to this, building a

classification model on the basis of the tag-event level is more complex. The example in Figures

3.6 and 3.7 show how scattered the distribution of tag-events during a gathering-cycle really

is. Nevertheless, in many cases it is possible for an experienced human observer to distinguish

between moved and static tags optically, just by looking at the tag-event development over
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time. Therefore, the second approach presented in this thesis aims at reproducing this human

capability by identifying and classifying the typical behavior of moved and static tags over the

time of a gathering-cycle.

The tag-event sequence of a specific RFID tag during a gathering-cycle is temporally ordered

and can thus be considered as a so called time-series. Generally, a time-series TS consists of

an ordered sequence of n > 0 data points di, which are usually real or integer values:

TS = (d1, . . . , dn)

Similar to the Domain- and Artificial Attributes the basis of the Time-Series Attributes is a

Tag-Occurrence

T = {(RSSI1, SinceStart1), . . . , (RSSIN , SinceStartn)}

encompassing n individual tag-events. Note that in contrast to the tag-occurrence level ap-

proach the antenna data is omitted. The basic idea of the tag-event level classification approach

presented here is to analyze these time-series and then decide whether they are more similar to

a typical moved time-series M = (m1, . . . ,mo) or to a typical static time-series S = (s1, . . . , sp).

However, the prerequisite for such a decision is that there is a formal understanding of the terms

similarity and similarity of time-series in particular.

5.3.1. About the Similarity between Time-Series

5.3.1.1. Distance Functions

In contrast to the decision tree classification approach using time-series analysis there is no clear

class determination in the form of a rule and a leaf (at least in the beginning). Rather, there is

a decision to be made as to whether a series is more similar to one than to another. Generally,

two objects are said to be similar to each other if they have a small distance. The distance

between two objects of class O is determined by evaluating a so called distance function

d : O ×O → R.

If o, p and q are objects of class O, then a distance function has to satisfy the following condi-

tions:

Non-Negativity d(o, p) ≥ 0. The distance between two objects cannot be negative.
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Identity of Indiscernibles d(o, p) = 0⇔ 0 = p. The two objects have a distance of 0 - if, and

only if, they are identical.

Symmetry d(o, p) = d(p, o) The distance from o to p is always the same as the distance from

p to o.

Triangle Inequality d(o, q) ≤ d(o, p) + d(p, q). The distance between o and p is always deter-

mined by the shortest connection between the two objects.

A common method to determine the similarity between two time-series is to interpret them

as vectors in a metric space [ZADB06] and then to calculate one of the Minkowski Distances.

Given two time-series T = (t1, . . . , tn) and U = (u1, . . . , un) then these distances (also called

Lp distances) are defined as follows:

Lp(T, U) = p

√√√√ n∑
i=1

|ti − ui|p

where L1 is called the Manhattan Distance, L2 the Euclidean Distance and L∞ is known as

the Chessboard Distance. In any case the similarity is determined by summing up the distance

between two corresponding data points of T and U . For optimization reasons the calculation

of the square root can be omitted because this does not alter the relative similarity ranking of

objects according to a reference. Initial tests have shown that from the Lp distances using the

Euclidean Distance leads to the best classification results and therefore it was chosen for the

distance calculation of individual data points over Manhattan and Chessboard Distance.

5.3.1.2. Offset Translation and Amplitude Scaling

As stated above, two time-series are said to be similar if they have a small distance between

each other. Intuitively, the distance between two time-series is small if they have the same

shape. In Figure 5.5 some fictitious sample time-series are depicted with developing values of

an arbitrary attribute over a period of 50 seconds. Considering Figure 5.5(a) it is obvious that

the reference series and series A are similar because they have the exact same shape. Series B

in Figure 5.5(b) has the same shape as the reference series, the only difference being that it

has a different amplitude. But nevertheless, one would also consider it as similar (though not

as similar as series A).
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Figure 5.5.: Distortions leading to high distance despite similar shapes.

5.3.1.2.1. Time Series Normalization In both cases the Euclidean Distance would determine

a high distance although the respective series have obviously similar shapes. Strictly speaking,

calculating the Euclidean distance between the reference series and series A yields a distance of

44.83. However, the distance between the reference series and series B amounts to only 40.75.

Intuitively, one would have expected a distance of 0 between the reference series and series A

and a small distance between the reference and series B. In order to deal with these two types of

time-series distortions known as offset translation and amplitude scaling a normalization before

calculating the distance appears to be reasonable (e.g. [ER08]).

Let

T = (t1, . . . , tn)

be a time-series. Then the normalized time-series T̂ is acquired by subtracting the average
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value of the series, t, from the individual data points and then dividing them by the standard

deviation of the values, σ(t) [GK95].

T̂ =

(
t1 − t
σ(t)

, . . . ,
tn − t
σ(t)

)
with

t =
1

n
·

n∑
i=1

ti and σ(t) =

√√√√ n∑
i=1

(ti − t)2

However, this procedure makes sense if, and only if, the shape of the two series is relevant

and not their absolute values. To demonstrate the effect Figure 5.6 shows series B after the

normalization. The shape has been kept the same but the amplitude scaling effect has almost

disappeared.
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Figure 5.6.: Normalization of time-series

Table 5.21 shows the different distances that were calculated between the reference series and

series B before and after the normalization. It can be seen that the series has a distance almost

twice as great before the normalization. Therefore it holds true that the normalization helps

in matching similar shapes despite time series distortions like offset translation and amplitude

scaling.

5.3.1.3. Stretching and Compression

Another important problem with time-series similarity is the occurrence of stretching or com-

pression which can be present either locally or globally. If the time-series is based on data
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Table 5.21.: Impact of Normalization on Distances to a Reference Series

Series Distance

Series B 40.75

Series B (normalized) 21.85

acquired from a human interaction, e.g., the movement of a pallet through an RFID portal,

then compression can be the result of a faster movement and stretching the result of a slower

movement by the warehouseman. This effect is described for example in [KPZ+04, PB02].

Figure 5.7 shows the reference series together with a compressed version of itself denoted as

series C. In this case the Euclidean Distance is not defined at all, because after 35 seconds no

data exists for series C. This is problematic because it is necessary to calculate the distance

between two corresponding data points from each series.
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Figure 5.7.: Compressed time-series

It would be intuitively reasonable to stretch series C to the length of the reference series

or to compress the reference series to the length of series C. However, two more meaningful

approaches to deal with this problem can be found in the literature: Uniform Scaling and

Dynamic Time Warping [FKL+05]. The main difference between them is that Uniform Scaling

tries to perform a global compression or stretching and Dynamic Time Warping does this only

locally. Both approaches are explained in the following.
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5.3.1.3.1. Uniform Scaling The idea of Uniform Scaling is to perform a uniform warping of

time to address the effect of shrunken or stretched time-series and was first proposed in [Keo03].

In order to calculate the similarity between two different time-series using some kind of distance

function like the Euclidean Distance introduced above, it has to be clear which data point of

the one series has to be compared to which data point of the other series. Let T = (t1, . . . , tn)

and U = (u1, . . . , um) be two different time-series with n < m. Shrinking U to the size of T is

not a valid option because this would mean a loss of information and so T has to be stretched

to the size of U . Consequently m− n data points have to be inserted into T resulting in a new

time-series T ′ = (t′1, . . . , t
′
m) with length m. The distance d between T and U is then calculated

by

d((t1, . . . , tn), (u1, . . . , um)) = d((t′1, . . . , t
′
m), (u1, . . . , um))

where the individual data points t′j are calculated as follows:

t′j = ub j·n
m
c where 1 ≤ j ≤ m

The resulting time-series after applying Uniform Scaling to series C is shown in Figure 5.8.
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Figure 5.8.: Uniform Scaling

Because every data point in the reference series now has a corresponding data point in the

scaled series C, the Euclidean Distance can be calculated in the usual way.

5.3.1.3.2. Dynamic Time Warping Rather than using a global stretching factor to scale

a time-series, Dynamic Time Warping (DTW) uses local scaling to determine the distance

between two time-series. This can be interpreted as a temporary acceleration or deceleration of
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the warehouseman moving the pallet through a portal. Originally, this approach was introduced

as a technique for speech recognition to cope with different speaking speeds [SC78]. Today,

Dynamic Time Warping is successfully applied to all kinds of data, including for example audio,

video and graphics data, in multiple disciplines such as computer science, biology, medicine and

economics. The most important difference compared to all other distance measures described

so far is that Dynamic Time Warping is far more flexible as it dynamically chooses which data

point pairs are compared to each other.
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Figure 5.9.: Dynamic Time Warping

Dynamic Time Warping is formally defined as

DTW ((), ()) = 0

DTW (T, ()) = DTW ((), U) =∞

DTW (T, U) = d(tn, um) + min


DTW ((t1, . . . , tn−1), (u1, . . . , um−1))

DTW ((t1, . . . , tn), (u1, . . . , um−1))

DTW ((t1, . . . , tn−1), (u1, . . . , um))

where d is called the ground distance function as it is used to determine the distance between

two single data points and not the entire time-series. Usually the Euclidean Distance or the

Manhattan distance is used for this purpose. Figure 5.9 shows Dynamic Time Warping applied

to the compressed series C. Note that the distance is now determined between different data

points than in the previous similarity measures. In particular, a single data point can be used

multiple times as a reference to a data point of the other time series. This effect becomes most

apparent at the last data point of C where it is compared to the remaining data points of the

reference series. Note that the line drawn between two data points does not correspond to their
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distance but is used only for presentation purposes to show which points are compared. The

distance is still determined by the difference between their absolute values. For example, DTW

would compare the two data points c22 to r25 which, using Euclidean Distance, results in a

distance of

d(c22, r25) = d(2.06, 1.55) =
√

(2.06− 1.55)2 = 0.51

Table 5.22.: Distances between Reference Series and compressed Series C

Approach Distance

Euclidean Distance Not defined

Uniform Scaling 29.28

Dynamic Time Warping 7.42

Initial experiments were performed to determine whether Dynamic Time Warping or Uniform

Scaling would lead to the best classification results with respect to the problem of stretched

and/or compressed time-series. It turned out that Dynamic Time Warping was able to handle

the variance in speed during a gathering-cycle much better than Uniform Scaling could. The

reason for this is that the first has the ability to deal with complex local distortions (e.g.,

spontaneous acceleration or deceleration of the warehouseman), while the latter, in contrast,

can only deal with global distortions. A comparison of the distances to the reference series

resulting from Uniform Scaling and Dynamic Time Warping is shown in Table 5.22.

5.3.2. Generation of Reference Time-Series

As previously stated, the tag-event level approach tries to determine whether the time-series

of a tag is more similar to a typical moved or more similar to a typical static time-series. The

tricky part of this approach, besides the concept of similarity, is the identification of such typical

time-series. In the previous section different time-series were compared to a so-called reference

series. This section therefore aims at the generation of such a reference series for moved and

static time-series, respectively, against which the tags can be compared afterwards. In general,

a reference series R for a tag class C has to satisfy the following two conditions:
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1. R is as similar as possible to all time-series in C

2. R is as dissimilar as possible to all time-series not in C

The question is how to find such a reference series. Basically there are two possibilities:

- Use an existing time-series from the sample data set as a reference (called median ap-

proach)

- Construct a new reference from the existing sample data (called mean approach)

5.3.2.1. Median Approach

The first possibility is rather simple and the pseudo code of the procedure for retrieving the

reference time-series for the moved tags is shown in Algorithm 6. For each moved time-series

m the average distance to all other moved series M \m is calculated. The time-series which

has the least average distance to all others is obviously the most typical and is thus chosen as

the reference time-series for all moved tags.

Algorithm 6: Median approach to reference series generation

Let M be the set of all moved time-series.

Let d be a distance function (e.g., Dynamic Time Warping)

foreach time-series m ∈M do
md = 0

foreach time-series s ∈M \m do
md = md + dist(m, s)

end

md = md/|M|
end

return m ∈M with minimum md

An alternative way of identifying the reference series is not to calculate the average minimum

distance to all moved series but to calculate the average maximum distance to all static series.

However, initial tests have shown that the first approach results in a much better classification

performance as a reference series having a high distance to all static tags does not necessarily

need to have a low distance to the moved tags. Or in other words: dissimilarity to static tags

does not implicate similarity to moved tags. Consequently such a reference series is useless.

110



5.3.2.2. Mean Approach

The major drawback of the median approach is that the reference series has to be one that

already exists in the sample data set. Consequently the approach is both limited by, and

depends upon, the number of sample time-series available for the two tag classes. It seems

likely that creating a completely new reference series is probably going to yield better results.

The second approach presented here is called mean approach and the pseudo code is shown

in Algorithm 7. The idea is that from all available samples an average time-series is calculated

and returned as the reference. This leads directly to the question of how the average of a set of

time-series is defined. Let T = (t1, . . . , tn) and U = (u1, . . . , un) be two time-series. Then the

average time-series V of T and U can be calculated by averaging the respective data points:

V =
(
t1 + u1

2
, . . . ,

tn + un
2

)
Or more generally if there are k different time-series M = {T1, . . . , Tk} then an average data

point vi is calculated by

vi =

∑k
j=1 tji

k

Algorithm 7: Mean approach to reference series generation

input : Number of Intervals k,

Interval length ∆t,

Set M of sample time-series with |M| = n

output: Reference time-series R = (r1, . . . , rk)

foreach time-series M ∈M do
Interpolate M

end

for i = 1 to k do
ri = 0

foreach time-series M ∈M do
ri = ri +mi

end

ri = ri/n
end

return R = (r1, . . . , rn)

However, this technique requires that all time-series have the same length, since only in this

case can an average value be computed. Uniform Scaling was presented above as an approach

to compress or stretch time-series to the same length. However, compressing and stretching
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each and every time-series in the sample data set to a specific length is computationally very

expensive - especially because a suitable length is very difficult to choose. Another problem

with this approach is that every single data point (i.e., tag-event) is taken into account and is

sometimes repeated multiple times in order to stretch a time-series. This in turn means that

the information about the timestamp showing exactly when the tag-event occurred is blurred

and can hardly be reconstructed. To deal with this problem another approach is presented here

to interpolate a time-series while keeping the temporal order of the individual tag-events.

5.3.2.2.1. Time-Series Interpolation The entire gathering-cycle is divided into k time in-

tervals of equal length ∆t. Consequently the reference series R is going to have a length of k

data points. If

M = (m1, . . . ,mn)

is a time-series with corresponding timestamps

(t1, . . . , tn)

then the k-th data point of R is the average of all data points of M that lie within the interval

I = [∆t · (k); ∆t · (k + 1)].

In a case where no tag-event occurred in a specific interval then the two preceding and the two

succeeding tag-events will be averaged and used as the interpolation. If there are no preceding

or succeeding tag-events then the first or the last tag-event is used, respectively.

An example of this procedure is shown in Figure 5.10. Figure 5.10(a) shows the reference

time-series introduced above before the interpolation. Note that six data points have been

removed from the series (seconds 15-16 and seconds 31-34) to show the effect of interpolating

missing data points in an interval. Figure 5.10(b) shows the same series after the interpolation.

The period of 50 seconds has been divided into k = 25 intervals with an equal length of ∆t = 2

seconds. Some important effects can be observed here: for example on the one hand, the shape

of the time-series has been retained, including the temporal order of the individual tag-events;

and on the other hand, in the intervals without any tag-events the mean approach is able to

successfully interpolate data points. This also holds true for the case where multiple intervals

in a row are missing tag-events.
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Figure 5.10.: Interpolation of a time-series

5.3.2.3. Identification of different Reference Series per Class

Observations in the METRO distribution center in Unna have shown that there is no one

and only typical reference time-series for moved or static tags. Rather, further sub classes exist

within each of the two tag-classes. For example, in Section 3.1.1.3 two different ways to retrieve

a pallet were described. In the one case, the warehouseman retrieves a pallet from the staging

area and then directly loads it into the container. In the other case, the warehouseman loads

one of the pallets that he previously buffered near the portal before. It is obvious that in these

two cases different shapes exist for the corresponding time-series, because in the second case

the warehouseman needs to rearrange the pallet in front of the portal before moving through,

in the first case he can pass it through the portal directly. Still, both pallets have been moved.

Furthermore it is, for example, possible that static tags which have already been loaded into

the truck show a different behavior than static tags buffered near the portal. In order to

improve the classification of moved and static tags these sub-classes have to be identified and

the respective reference time-series have to be generated.

A common method used in machine learning to find such sub-classes is called Cluster Analysis.
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Various clustering methods exist with k-Means [Mac67] and k-Medoid [KR90] being the most

popular. These two methods are called partitioning methods because they aim at partitioning

the data set into k disjunctive sub sets where each is represented by an individual cluster center.

The major drawback of these two algorithms compared to other clustering algorithms is that

the number of clusters, k, has to be chosen in advance. To solve this problem the performances

of the algorithms using different k values are compared. The general algorithm for creating

such a clustering is shown in Algorithm 8.

Algorithm 8: Partitioning Clustering

input : Set M of sample time-series with |M| = n

Number of clusters k

choose k random cluster centers c1, . . . , ck for clusters C1, . . . , Ck

repeat

foreach time-series m ∈M do
assign m to the closest cluster C, i.e., where d(m, c) is minimal

end

foreach clusters C ∈ C do
calculate new cluster center c

end

until No more changes in clustering

Initially the k cluster centers are chosen randomly. Then every time-series in the data set is

assigned to the cluster where the distance to the cluster center is minimal. After all time-series

have been assigned to a cluster the cluster centers for each cluster are recalculated. Again all

time-series are assigned to the new clusters where the distance to the center is minimal. This

procedure is repeated until there are no more changes in the clustering, i.e., the cluster centers

do not move after the recalculation.

Another drawback of these partitioning cluster algorithms is that the result depends on the

initial choice of the k cluster centers which means that different initial cluster centers yield

a different result. Consequently, the clustering is repeated multiple times for each value of k

and the best clustering is returned. At this point it is necessary to clarify how to measure

the goodness of a clustering and when to choose one clustering over another. The quality of

a clustering depends on how similar time-series in the same cluster are to each other and how

dissimilar they are to time-series in other clusters.

A common method to determine this is to use the Davies-Bouldin-Index DB [DB79]. For a
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clustering with k clusters it is defined in the following way:

DB =
1

k

k∑
i=1

max
i6=j

{
σ(Ci) + σ(Cj)

δ(Ci, C, j)

}
where σ(Ci) is denoted intra-cluster distance and is a measure of scatter of the objects within a

cluster and δ(Ci, Cj) is denoted inter-cluster distance and corresponds to the distance between

two clusters. For a cluster C with n objects oi and a cluster center c, σ(C) is defined as follows:

σ(C) = 2

(
1

|C|

n∑
i=1

d(oi, c)

)

where d(oi, c) corresponds to the distance between an object oi and the cluster center c. The-

oretically any distance measure (for example the Euclidean Distance) can be used here, but

since Dynamic Time Warping showed the best results it is chosen here. The distance between

two clusters Ci and Cj , denoted as δ(Ci, Cj) is defined as the distance between their cluster

centers ci and cj :

δ(Ci, Cj) = d(ci, cj)

Small DB values correspond to compact clusters where the centers of different clusters are

far away from each other. Consequently, the clustering minimizing DB is considered the best

clustering.

As stated above, the initial choice of the k cluster centers as well as the number of clusters,

k itself, is unknown in advance. Calculating DB multiple times for different k values results in

the best choice for these parameters.

5.3.3. Classification using Time-Series Analysis

In the previous section it was shown how the similarity between time-series is calculated and

how reference time-series are created that correspond to typical moved and static tags. This

section is going to show how the concept of similarity is used for building a classification

model. Usually, when dealing with similarity, a so called similarity query is performed. The

most common types of similarity queries are ε-range query and k-nearest neighbor query, which

are both explained below.
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5.3.3.1. ε-Range Query

The general idea of the ε-range query is to retrieve all objects that have a similarity of at least

ε to the query object. If t is the tag to classify, M and S are the sets of moved and static

reference series, respectively, and d is the distance function (e.g., Dynamic Time Warping),

then the ε-range query R is formally defined as

R(t, ε) = {r ∈M ∪ S|d(t, u) ≤ ε}

If a small value is chosen for ε, then the resulting set contains all reference time-series that

are very similar to the tag of interest. In turn, choosing a higher value for ε results in a set

containing more references that are similar to the tag of interest. In both cases a majority vote

is performed, thus classifying the tag as the class of the majority of the references in this set.

This majority voting can be tuned further by ranking the references according to their distance.

5.3.3.2. k-Nearest Neighbor Query

Choosing a meaningful value for ε is often not an easy task. If the value is too small, then the

resulting set is empty. In the case of a too large ε value the resulting set may contain non-

significant references. Therefore, an alternative way of retrieving similar references is presented,

the k-nearest neighbor query (k-NN). The general idea of this approach is to retrieve the k

nearest neighbors, which correspond to the references which are closest to the query tag. In

the case of k = 1 only the closest, i.e., the most similar reference is returned. The k-NN query

is formally defined as

k −NN(t) = {R ⊆M ∪ S||R| = k ∧ ∀r ∈ R, u ∈ (M ∪ S) \ r : d(t, r) ≤ d(t, u)}

where M and S correspond to the set of typical moved and static references, t is the tag of

interest and d is a distance function (e.g., Dynamic Time Warping). First of all, this query

type can be used to find out whether the k most similar references correspond to moved or

static time-series. If the ranking is ambiguous, i.e., if there are several references with similar

distance but different class types, then usually a majority voting is performed to determine the

class type of the query tag. Secondly, choosing k = 1 returns only the nearest neighbor and

consequently the query tag is classified as the corresponding class.
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5.3.3.3. Time Series Attributes

The similarity queries presented above can be used in various ways to determine the class type

for a tag of interest and it is reasonable to use an approach that is able to combine the strengths

of both of them. In Section 5.1 decision trees were introduced to find the best combination

of attributes and their values. Consequently, the same approach is used here to combine

different similarity queries, especially because it is easy to eventually combine both classification

techniques (i.e., tag-occurrence level classification and tag-event level classification). However,

in order to successfully apply decision tree learning it is required that attributes in the form

of the Domain Attributes exist. In the following the list of attributes to describe a tag on the

basis of the time-series similarity queries is presented.

DM,DS The distance between the tag and the reference time-series of all moved and static

tags, respectively. By nature, moved tags should have a lower distance to this time-series

than static tags do and vice-versa.

DM,Ci
,DS,Cj

In cases where the i sub-classes have been identified for the moved tags and j sub-

classes for the static tags then this attribute corresponds to the distance to the respective

cluster reference time-series. By nature, moved tags should have a lower distance to the

moved reference time-series and static tags should have a lower distance to the static

reference time-series.

DM,Min,DS,Min The minimum of the distances to all available moved and static reference

time-series, respectively. By nature, moved tags should have a lower minimum distance

to the moved reference time-series and static tags should have a lower minimum distance

to the static reference time-series.

DM,Min = minDM ∪ {DM,Ci
} DS,Min = minDS ∪ {DS,Cj

}

DM,Max,DS,Max The maximum of the distances to all available moved and static reference

time-series, respectively. By nature, moved tags should have a lower maximum distance

to the moved reference time-series and static tags should have a lower maximum distance

to the static reference time-series.

DM,Max = maxDM ∪ {DM,Ci
} DS,Max = minDs{∪DS,Cj

}
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DM,Mean,DS,Mean The average of the distances to all available moved and static reference

time-series, respectively. By nature, moved tags should have a lower average distance to

the moved reference time-series and static tags should have a lower average distance to

the static reference time-series. If there are n moved an m static sub-classes then this

attribute is defined as follows:

DM,Mean =
1

n+ 1

(
DM +

n∑
i=1

DM,Ci

)
DS,Mean =

1

m+ 1

(
DS +

m∑
j=1

DS,Cj

)

DM,StDev,DS,StDev The standard deviation of the distances to all available moved and static

reference time-series, respectively. By nature, moved tags should have a lower standard

deviation of the distances to the moved reference time-series (analogous with static tags).

If there are n moved an m static sub-classes then this attribute is defined as follows:

DM,StDev =

√√√√|DM −DM,Mean|2 +

n∑
i=1

(DM,Ci
−DM,Mean)2

DS,StDev =

√√√√|DS −DS,Mean|2 +

m∑
j=1

(DS,Cj
−DS,Mean)2

DM,CoV,DS,CoV The coefficient of variation of the distances to all available moved reference

time-series. By nature, moved tags should have a lower CoV value with respect to the

distances to the moved reference time-series (analogous with static tags).

DM,CoV =
DM,StDev

DM,Mean
DS,CoV =

DS,StDev

DS,Mean

NN The class of the nearest neighbor (i.e., the class of the reference series to which the distance

is minimal) of the tag. By nature, the nearest neighbor of a moved tag should be a moved

reference and the nearest neighbor of a static tag should be a static reference.

NN =

Moved, if DM,Min < DS,Min

Static, if DM,Min ≥ DS,Min
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FN The class of the furthest neighbor (i.e., the class of the reference series to which the distance

is maximal) of the tag. By nature, the furthest neighbor of a moved tag should be a static

reference and the furthest neighbor of a static tag should be a moved reference.

FN =

Moved, if DS,Max < DM,Max

Static, if DS,Max ≥ DM,Max

AgreeNN,FN Indicates whether NN and FN agree, i.e., whether the nearest neighbor and the

furthest neighbor correspond to different tag classes. Where the nearest and the furthest

neighbor correspond to the same class then a decision is not possible. In any other case,

the class of the nearest neighbor is returned. Note that only for the corresponding object

classes, i.e., Moved and Static can the class precision be calculated.

AgreeNN,FN =


Unknown, if NN = FN

Moved, if NN 6= FN and NN = Moved

Static, if NN 6= FN and NN = Static

AgreeMain,Truck This attribute indicates whether the classification at the Main- and Truck

antennas agree, i.e., whether the nearest neighbors determined at both the Main- and

Truck antennas are of the same class. It is only applicable to the Satellite Portals. Note

that only for the corresponding object classes, i.e., moved and static can the class precision

be calculated.

AgreeMain,Truck


Moved, if NNMain = Moved and NNTruck = Moved

Static, if NNMain = Static and NNTruck = Static

Unknown, if NNMain 6= NNTruck

AgreeDC,Truck This attribute indicates whether the classification at the Main and Truck an-

tennas agree, i.e., whether the nearest neighbors determined at both the Main and Truck

antennas are of the same class. It is only applicable to the transition portals. Note that

only for the corresponding object classes, i.e., Moved and Static can the class precision

be calculated.

AgreeMain,Truck


Moved, if NNDC = Moved and NNTruck = Moved

Static, if NNDC = Static and NNTruck = Static

Unknown, if NNDC 6= NNTruck
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Figure 5.11 shows the reference series that have been generated for the Standard Portals. The

clustering has led to 5 different moved reference series and 2 different static reference series. It is

notable that the shapes do indeed match the original expectation stated in Section 3.2.3 of how

moved and static tags should behave. While there are two different cases of false-positives that

differ only in the overall signal strength they are read with, the moved cases are significantly

different. As was expected, they all have a maximum RSSI value that corresponds to the point

in time where the pallet is just passing the portal. However, the actual maximum RSSI values

differ from -56dBm up to -47dBm and occur after different periods of time, ranging from 0.5

seconds up to 1.8 seconds after the beginning of the gathering-cycle. It is also interesting to

see that only the first 3.5 seconds of the gathering-cycle carry meaningful information.
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Figure 5.11.: Reference Time-Series (STD COMPLETE Data Set)
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The investigation of the corresponding attribute values is shown in Table 5.23. The detailed

distances between the individual reference series can be found in the appendix in Table C.1. It

can be observed that moved tags have a moved nearest neighbor in 96.6% and a static furthest

neighbor in 92.3% of all cases. Although 12,230 (92.3%) moved tags have a moved reference as

nearest- and a static reference as furthest neighbor it is notable that in 446 (3.4% of all) cases

this is the other way around. However, these rates are significantly worse for the static tags,

as although in 92.0% of all cases they have a moved furthest neighbor, only in 84.8% do they

have a static nearest neighbor. It is notable too, that in 3,251 (7.9% of all) cases a static tag

has a moved reference as nearest- and a static reference as furthest neighbor.

Table 5.23.: Time-Series Attribute Value Investigation (STD COMPLETE Data Set)

Attribute Value Moved Tags Static Tags Precision

NN Moved 12,799 6,206 67.3%

Static 446 34,537 98.7%

Recall 96.6% 84.8%

FN Moved 1,015 37,487 97.4%

Static 12,230 3,256 79.0%

Recall 92.3% 92.0%

AgreeNN,FN Moved 12,230 3,251 79.0%

Static 446 34,532 98.7%

Unknown 569 3,529

Recall 92.3% 83.6%

Figure 5.12 shows the reference series that have been generated for the tags read only by

the Main Antennas of the Satellite Portals. Like the Standard Portals the clustering has led

to 5 different moved and 2 different static reference series. In general, as could be expected,

the moved and static references appear to be very similar to those generated for the Standard

Portals.
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Figure 5.12.: Moved and Static Reference Time-Series (SAT MAIN ONLY Data Set)

The investigation of the corresponding attribute values is shown in Table 5.24. The detailed

distances between the individual reference series can be found in the appendix in Table C.2.

It can be observed that the moved detection rate (i.e., the moved recall) is similar to the rates

observed at the Standard Portals, except for the nearest neighbor rate which is a little bit worse.

However, it is interesting that the static detection rate significantly increased. In contrast to the

Standard Portals, the static detection rate increased by 2.8 percentage points for the nearest-

and by 3.3 percentage points for the furthest neighbor attribute. In the case where a static

reference was the nearest- and a moved reference was the furthest neighbor (AgreeNN,FN ) the

rate increased by an even 4.0 percentage points.

Figure 5.13 shows the moved and static reference series for the tags that were seen by both

Main- and Truck Antennas at the Satellite Portals. In contrast to the two cases described
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Table 5.24.: Time-Series Attribute Value Investigation (SAT MAIN ONLY Data Set)

Attribute Value Moved Tags Static Tags Precision

NN Moved 629 318 66.4%

Static 27 2,253 98.8%

Recall 95.9% 87.6%

FN Moved 51 2,450 98.0%

Static 605 121 83.3%

Recall 92.2% 95.3%

AgreeNN,FN Moved 605 121 83.3%

Static 27 2,253 98.8%

Unknown 24 197

Recall 92.2% 87.6%

above only a single moved and static reference was generated for each antenna type because

the cluster analysis did not improve the results. The data collected at the Main Antennas was

then compared to the moved and static references of the Main Antenna and the data collected

at the Truck Antennas compared to the references of the Truck Antennas. It is notable that

the expectation of an increasing RSSI value can also be extended to the Truck Antennas.

The investigation of the corresponding attribute values is shown in Table 5.25. The detailed

distances between the individual reference series can be found in the appendix in Table C.3.

Note that the furthest neighbor attributes were omitted because there are only two references

available. Consequently, if the one reference series is the nearest- then the other one is furthest

neighbor by definition. Thus, the nearest- and furthest neighbor attributes carry the exact same

information, thus leading to the exact same recall and precision rates. Looking at the nearest

neighbor attribute of the Main Antennas, it can be observed that in contrast to the above cases

the moved detection rate is somewhat worse while the static detection rate is slightly better.

Looking at the Truck Antennas only, for 84.2% of the moved and 69.6% of the static tags the

correct nearest neighbor could be determined. Only 79.6% of all moved tags were assigned the

correct neighbor class by both the Main and Truck antennas. This ratio is even worse for the

static tags where only 65.5% of all tags were classified correctly. However, if a tag is classified

as static by the AgreeMain,Truck attribute, then this decision has a precision of 92.2% ie., very

confident.
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Figure 5.13.: Moved and Static Reference Time-Series (SAT MAIN TRUCK Data Set)

Figure 5.14 shows the moved and static reference series for the tags that were seen by both

DC- and Truck Antennas at the Transition Portals. Like the Main- and Truck Antennas of

the Satellite Portals, individual references have been generated for DC- and Truck Antennas.

Moved pallets start off with a higher RSSI value that decreases over time while passing the DC

Antennas. Subsequently the RSSI values measured at the Truck Antennas increase and then

decrease around 1.5 seconds later. It is also interesting to see that the static tags are read with

a constant RSSI value that eventually decreases towards the end.

The investigation of the corresponding attribute values is shown in Table 5.26. The detailed

distances between the individual reference series can be found in the appendix in Table C.4. It

is particularly notable that none of the attributes is able to achieve a classification rate over

88% on its own. However, the static precision of the NNDC and AgreeDC,Truck attributes is
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Table 5.25.: Time-Series Attribute Value Investigation (SAT MAIN TRUCK Data Set)

Attribute Value Moved Tags Static Tags Precision

NNMain Moved 1,187 216 84.6%

Static 95 1,683 94.7%

Recall 92.6% 88.6%

NNTruck Moved 1,080 577 65.2%

Static 202 1,322 86.7%

Recall 84.2% 69.6%

AgreeMain,Truck Moved 1,021 138 88.1%

Static 36 1,244 97.2%

Unknown 225 517

Recall 79.6% 65.5%

above 92.0% and is thus quite good.

Table 5.26.: Time-Series Attribute Value Investigation (TRA BOTH Data Set)

Attribute Value Moved Tags Static Tags Precision

NNDC Moved 1,115 285 79.6%

Static 184 2,107 92.0%

Recall 85.8% 88.1%

NNTruck Moved 1,089 819 57.1%

Static 210 1,573 88.2%

Recall 83.8% 65.8%

AgreeDC,Truck Moved 990 152 86.7%

Static 85 1,440 94.4%

Unknown 224 800

Recall 76.2% 60.2%
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Figure 5.14.: Moved and Static Reference Time-Series (TRA BOTH Data Set)

5.4. Further Classification Approaches

In the following sections the combined classification approach is presented together with the

exclusive approach that can be used based on the assumption that the number of tags to be

classified as either “moved” or “static” is known in advance.

5.4.1. Combined Classification Approach

What Tag-occurrence level classification and tag-event level classification have in common is

that they describe a tag using a number of attributes. There are two different types of attributes,

numerical attributes on the one hand and nominal attributes on the other. In both approaches

these attributes are evaluated using a decision tree learner which eventually classifies a tag as
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being either moved or static. It is a logical consequence that both attribute sets can be used as

input to a combined decision tree. However, additional attributes can also be used to further

improve the classification. First of all, the decisions of the two approaches themselves can serve

as attributes. Secondly, some kind of a combined decision can be employed. The attributes

that were used in the combined approach are described in the following:

CTO The decision of the tag-occurrence based classification model. Results (see Chapter 6)

have shown that this classification is already very confident.

CTO =

Moved, if tag-occurrence based classification was “moved”

Static, if tag-occurrence based classification was “static”

CTE The decision of the tag-event based classification model. Results (see Chapter 6) have

shown that this classification is already very confident.

CTE =

Moved, if tag-event based classification was “moved”

Static, if tag-event based classification was “static”

AgreeTO,TE Indicates whether both classification models came to the same decision. Usually,

if they both agree then the decision is very confident. If this is not the case, then a clas-

sification is performed on the basis of the other available attributes (i.e., tag-occurrence,

tag-event and so on).

AgreeTO,TE =


Moved, if CTO = Moved ∧ CTE = Moved

Static, if CTE = Static ∧ CTE = Static

Unknown, if CTE 6= CTO

5.4.2. The Exclusive Approach

5.4.2.1. Background

The framework presented here is capable of classifying moved and static tags based solely on

the low-level readings collected during a gathering-cycle and independently of each other. This

means that if multiple tags are moved through an RFID portal then the classification model is

able to classify all of them as “moved”. However, there is another approach that was used for

experimental purposes and that led to even better results on a selected subset of the sample

data. Although it can’t be used in the scenario studied here, the RFID-enabled outgoing goods
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process in the METRO distribution center, it is likely to be helpful for other processes. The

approach is based on the attributes presented above and thus requires only a little adaption.

In many scenarios it is known in advance how many tags of interest have to be identified, for

example in processes such as removing pallets from a high-rack storage area where exactly one

pallet is retrieved every time. This is different from the scenario that this thesis is based on,

because of the occurrence of stacked pallets. This term is used to describe a situation where

sometimes multiple pallets with a very low height are stacked on top of each other and are

then moved through the portal at the same time. Since each of these low-height pallets also

still has its own RFID tag attached to it, it is possible that more than one tag seen during a

gathering-cycle has been moved. Furthermore, in many cases no pallet was moved at all but

because somebody was passing by the portal the motion sensor signaled the RFID reader to

scan for pallets. However, where it is known and can be assured that a fixed number of tags

has to be identified, then the following approach can be used:

5.4.2.2. Distance Ranking Classification

The idea is to interpret every tag as a vector with a fixed length corresponding to the number

of attributes used to describe it. If, for example all RSSI attributes defined in Section 5.2.1.1

are used, then each tag T is a vector of length six:

T = [RSSIMin, RSSIMax, RSSIDiff , RSSIMean, RSSIStDev, RSSICoV ]

Like the time-series similarity queries, some kind of reference object is needed to estimate the

degree of similarity. Therefore, two reference vectors corresponding to typical moved and static

tags are calculated. Without loss of generality the procedure is shown exemplarily for the class

of moved tags. Let T = [A1, . . . , Ak] be the representation of a tag using k different attributes.

Then the average moved tag R is represented by

R = [µ(A1), . . . , µ(Ak)]

where µ(Ai) is calculated by averaging the attribute values of the n moved tag samples M =

{M1, . . . ,Mn} in the sample data set

µ(Ai) =
1

n
·

n∑
i=1

Mi.A
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Similarity between a query tag T = [A1, . . . , Ak] and the typical moved reference vector R =

[µ(A1), . . . , µ(Ak)] is then determined using the cosine distance

sim(T,R) = cos(T,R) =
T ×R
|T | · |R|

=

∑k
i=1Ai · µ(Ai)√∑k

i=1A
2
i

√∑k
i=1 µ(Ai)2

or the Euclidean distance d(T,R):

sim(T,R) = 1− d(T,R) =

k∑
i=1

|Ai − µ(Ai)|

As stated in Section 5.3.1.1 the square root can be omitted without losing the similarity

order. Because different attributes have different value ranges a normalization of the value

space is required. The normalization of an attribute value v of an attribute A, denoted as v′,

is based on the interval [0,1] and is estimated by

v′ = (v −minA) · 1

maxA−minA

where maxA and minA correspond to the maximum and minimum attribute values of A. To

classify a tag as moved or static, the cosine or Euclidean distance between the tag and the

moved and static references is calculated. From all tags read during a gathering-cycle only the

one which is most similar to the moved reference or most dissimilar to the static reference is

classified as the moved tag. All other are classified as static, i.e., false-positives.

Example (Distance Ranking Classification)

The distance ranking approach is demonstrated by using three attributesRSSIMax, RSSIDiff

and RSSIStDev to describe each tag. Let T1, T2 and T3 be the three tags read during

a gathering-cycle with the following attribute values:

Tag RSSIMax RSSIDiff RSSIStDev

T1 = [-49.2dBm, 15.2dBm, 4.9dBm]

T2 = [-39.2dBm, 27.0dBm, 6.3dBm]

T3 = [-43.7dBm, 19.6dBm, 9.5dBm]
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According to Table 5.2 the moved reference vector M equals

M = [−44.1, 18.7, 5.3]

Normalizing all tags using the respective minimum and maximum values in Table

5.2 yields

T ′1 = [0.61, 0.55, 0.58]

T ′2 = [0.97, 0.98, 0.74]

T ′3 = [0.81, 0.71, 0, 80]

M ′ = [0.80, 0.68, 0.62]

The tag which is classified as moved is the one that has the minimum distance (or

maximum similarity) to the moved reference vector. Using Euclidean distance this

yields the results shown in Table 5.27.

Table 5.27.: Distance Ranking Classification Results

Tag d(Tag,M′) Similarity

T ′1 0.35 0.65

T ′2 0.59 0.41

T ′3 0.23 0.77

Because of the three tags T3 is the one that is most similar to the reference vector, is

it classified as the moved tag. T1 and T2 are consequently classified as false-positives.
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5.5. Summary

This chapter introduced Decision Trees as the classification model of choice for our framework

to distinguish between moved and static RFID tags. Two concurring approaches to decision

tree learning, C4.5 and CART, were introduced. Such decision trees consist of leaves and

branches which correspond to a sequence of Yes/No questions which eventually lead to the

final classification of a tag as being either moved or static. The individual Yes/No questions are

representations of attribute value tests according to typical moved and static tag characteristics.

In addition, three major approaches for describing a tag’s characteristics were introduced.

The first approach, Tag-Occurrence Level Classification, examines the entirety of all the answers

a specific tag gave to the RFID reader during a gathering-cycle. This then leads to the definition

of a large number of so called attributes which can be used to describe specific characteristics of

a tag. Since every tag-event is represented by the three dimensions signal strength, timestamp

and corresponding RFID reader antenna there are three different groups of attributes.

Next, the difference between domain attributes (derived from experience and knowledge of

people working in the environment) and artificial attributes (automatically constructed on the

basis of the domain attributes) was explained. The aim and purpose of constructing and using

artificial attributes was described in detail. Furthermore, a unique attribute, TOCount was

introduced which states how often a tag has been seen during previous loadings. Its special

position is owed to the fact that it is the only attribute taking knowledge from the past (i.e.,

preceding pallet loadings) into account. Besides these, attributes on the basis of the low-level

reader data so called Logical Reader Attributes were introduced. They are used to describe the

order in which a tag was read by different readers installed at the same portal, if available.

The second approach, Tag-Event Level Classification, examines the individual answers (i.e.,

tag-events) a tag gave during a gathering-cycle. This sequence of temporally ordered data

points can be interpreted as a time-series. Consequently, typical time-series for moved and

static tags have been extracted from the sample data set. These series are called reference

series and they are compared to the time-series originating from the tag-events of the tag of

interest. It was explained in detail how the similarity of two time-series can be computed and

Dynamic Time Warping was introduced as the major similarity measure used. Observations

in the distribution center have shown that there are different types of moved and static tags.

Consequently, partitioning clustering was used to identify such sub classes.

The third approach is a combination of the two preceding ones. The decisions of the tag-

occurrence and tag-event level classification models are used as binary attributes themselves.

These decisions can also be tested to see if both approaches agree as to whether a tag has been
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moved or is static. Furthermore, all other attributes from the tag-occurrence and tag-event

level approaches are used as input to the decision tree.

The chapter closed by proposing a fourth approach that relies on the attributes presented

here but can only be used if it is known in advance how many tags need to be classified as

moved (or static, depending on the scenario). In the scenario of an outgoing goods process

this a priori knowledge cannot be assured, due to situations such as the occurrence of stacked

pallets, for example. However, in several other processes, for example retrieving pallets from

high-rack storage areas, where it is known in advance that exactly one pallet was retrieved and

needs to be discriminated from among all other detected tags, the approach is likely to be very

useful.
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6. Evaluation

In Sections 3.1.2 and 3.1.3, the business objectives and the corresponding measurable data

mining goals were identified. The most important business objective was, of course, to mini-

mize the number of false-positive RFID tag reads and consequently the number of erroneously

shipped pallets. In the first instance this is measured by the moved, static and overall detection

rate (i.e., the classification accuracy) as defined in Section 3.3.1.3, as with this information the

total number of actual incorrectly shipped pallets can be estimated.

Furthermore, it was stated that the classification model has to show a reliable performance

over time because any significant variance in the classification performance inevitably prevents

a productive use. In order to evaluate this quality measure the performance is averaged over

individual days so that occasional performance outliers can be easily identified.

In total three different classification models were presented: tag-occurrence-, tag-event- and

a combined approach; along with three different portal types, denoted as Standard-, Satellite-

and Transition Portals. Because every classification approach was applied to every portal

type, the best combination(s) could therefore be identified. Initially, each portal type with its

corresponding classification model is evaluated and afterwards a summary is given comparing

the results.

Although classification accuracy and classification performance over time act as the primary

evaluation measures, it is also necessary to evaluate the remaining and secondary business

objectives. Accordingly, to it was also evaluated to what extent the solution was able to

generate additional knowledge and what further costs might be expected.

In addition, because the framework is supposed to be used in a productive environment, the

deployment of the classification models in the METRO distribution center in Unna, Germany,

and the resulting experiences are briefly described.

6.1. Evaluation of Classification Accuracy

In order to evaluate the ability to detect false-positive RFID tags, the moved, static and overall

detection rates are calculated. The detection rate for a class is synonymous with the denom-
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ination of the class recall as defined in Section 3.3.1.3, the overall detection rate corresponds

to the classification accuracy. At this point, only these three performance measures plus the

corresponding error rates are of interest, and these are therefore presented. In the following

sections the different detection rates are presented for each approach and portal type.

6.1.1. Standard Portals

Table 6.1 shows the detection rates and the corresponding error rates that were achieved for

moved, static and the whole of all tags on the STD COMPLETE data set. Of the three classification

models the tag-occurrence level is the most suitable for detecting false-positive RFID tag reads

as it offers an error rate of only 1.49%. However, it also shows the worst moved detection rate

with an error rate of 5.34%. In terms of the overall detection rate (2.00% error rate) and for the

detection of moved tags (2.51% error rate) the combined approach shows the best performance.

It is interesting to note that it is able to significantly improve the moved detection rate but

cannot achieve such an improvement for the static detection rate.

Table 6.1.: Standard Portals - Detection Rates (STD COMPLETE Data Set)

Approach Classification Moved Static Overall

Tag-Occurrence Level Accuracy 94.66% 98.51% 97.57%

Error 5.34% 1.49% 2.43%

Tag-Event Level Accuracy 94.78% 97.95% 97.17%

Error 5.22% 2.05% 2.83%

Combined Approach Accuracy 97.49% 98.17% 98.00%

Error 2.51% 1.83% 2.00%

6.1.2. Satellite Portals

In Section 4.3.2 it was stated that the data collected at the Satellite Portals was divided into 7

disjunctive data sets corresponding to the respective antennas that read a tag. It was further

stated that only in the cases where either only the Main Antennas (SAT MAIN ONLY data set)

or only Main- and Truck Antennas (SAT MAIN TRUCK data set) read a tag was the development

of a classification model necessary. The reasons for this were that in any other case (for example

only Truck Antennas read a tag) hardly any moved tags were found.
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Consequently, the detection rates achieved with these two individual data sets and the de-

tection rates for the whole data set SAT COMPLETE are presented.

Table 6.2.: Satellite Portals - Detection Rates (SAT MAIN ONLY Data Set)

Approach Classification Moved Static Overall

Tag-Occurrence Level Accuracy 98.63% 98.87% 98.82%

Error 1.37% 1.13% 1.18%

Tag-Event Level Accuracy 98.32% 99.14% 98.98%

Error 1.68% 0.86% 1.02%

Combined Approach Accuracy 98.48% 99.26% 99.10%

Error 1.52% 0.74% 0.90%

Table 6.2 shows the detection rates and the corresponding error rates that were achieved

for moved, static and the entirety of the tags on the SAT MAIN ONLY data set. From the three

classification models the combined approach is the most suitable for detecting false-positive

RFID tag reads, with an error rate of only 0.74%. This also holds true for the overall detection

rate, with an error rate of only 0.9%. However, the tag-occurrence approach outperforms the

combined approach in terms of the moved detection rate.

It is interesting too, to note that taking the combined approach slightly outperforms the

moved detection rate of the tag-event approach but is still worse than the tag-occurrence ap-

proach. However, it does have a significantly better static detection rate - leading in turn to a

better overall detection rate.
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Table 6.3.: Satellite Portals - Detection Rates (SAT MAIN TRUCK Data Set)

Approach Classification Moved Static Overall

Tag-Occurrence Level Accuracy 99.30% 96.74% 97.77%

Error 0.70% 3.26% 2.23%

Tag-Event Level Accuracy 97.50% 97.42% 97.45%

Error 2.50% 2.58% 2.55%

Combined Approach Accuracy 98.28% 98.68% 98.52%

Error 1.72% 1.32% 1.48%

Table 6.3 shows the detection rates and the corresponding error rates that were achieved for

moved, static and the entirety of the tags in the SAT MAIN TRUCK data set. Among the three

classification models the combined approach is the most suitable for detecting false-positive

RFID tag reads, with an error rate of only 1.32%. This holds true also for the overall detection

rate, with an error rate of only 1.48%. However, the tag-occurrence approach outperforms the

combined approach in terms of the moved detection rate.

Like the SAT MAIN ONLY data set the combined approach has the best static and overall

detection rate but cannot reach the moved detection rate of the tag-occurrence approach.

Table 6.4.: Satellite Portals - Detection Rates (SAT COMPLETE Data Set)

Approach Classification Moved Static Overall

Tag-Occurrence Level Accuracy 97.41% 99.29% 99.04%

Error 2.59% 0.71% 0.96%

Tag-Event Level Accuracy 96.14% 99.45% 99.01%

Error 3.86% 0.55% 0.99%

Combined Approach Accuracy 96.70% 99.66% 99.26%

Error 3.30% 0.34% 0.74%
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Table 6.4 shows the detection rates and the corresponding error rates that were achieved for

moved, static and the entirety of the tags on the SAT COMPLETE data set. Of the three classi-

fication models the combined approach is the most suitable for detecting false-positive RFID

tag reads - with an error rate of only 0.34%. This also holds true for the overall detection rate,

with an error rate of only 0.74%. Once again though, the tag-occurrence approach outperforms

the combined approach in terms of the moved detection rate.

6.1.3. Transition Portals

As with the Satellite Portals, the data collected at the Transition Portals was divided into 3

disjunctive data sets (see Section 4.3.3) corresponding to the respective antennas that read

a tag. It was stated that only for the case where a tag was read by both DC- and Truck

Antennas was the development of a classification model necessary. In the case where only DC-

or only Truck Antennas read a tag this affected hardly any moved tags. Consequently, the

detection rates achieved at the TRA BOTH data sets and the detection rates for the whole data

set TRA COMPLETE are presented.

Table 6.5.: Transition Portals - Detection Rates (TRA BOTH Data Set)

Approach Classification Moved Static Overall

Tag-Occurrence Level Accuracy 93.69% 97.49% 96.15%

Error 6.31% 2.51% 3.85%

Tag-Event Level Accuracy 94.69% 95.23% 95.04%

Error 5.31% 4.77% 4.96%

Combined Approach Accuracy 94.38% 93.73% 93.96%

Error 5.62% 6.27% 6.04%

Table 6.5 shows the detection rates and the corresponding error rates that were achieved for

moved, static and the entirety of the tags in the TRA BOTH data set. Of the three classification

models the tag-occurrence approach is the most suitable for detecting false-positive RFID tag

reads - with an error rate of 2.51%. This also holds true for the overall detection rate, with an

error rate of only 3.85%. However, in terms of the moved detection rate the tag-event- and the
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combined approach do a better job.

Surprisingly, the combined approach is not able to reach the performance of the other two

approaches and in fact the error rates are quite high compared to the other portal types anyway.

Table 6.6.: Transition Portals - Detection Rates (TRA COMPLETE Data Set)

Approach Classification Moved Static Overall

Tag-Occurrence Level Accuracy 89.62% 99.52% 98.55%

Error 10.38% 0.48% 1.45%

Tag-Event Level Accuracy 90.57% 99.09% 98.25%

Error 9.43% 0.91% 1.75%

Combined Approach Accuracy 90.28% 98.80% 97.96%

Error 9.72% 1.20% 2.04%

Table 6.6 shows the detection rates and the corresponding error rates that were achieved

for moved, static and the entirety of the tags in the TRA COMPLETE data set. Of the three

classification models the tag-occurrence approach is the most suitable for detecting false-positive

RFID tag reads - with an error rate of only 0.48%. This also holds true for the overall detection

rate, with an error rate of only 1.45%. However, in terms of the moved detection rate the tag-

event- and the combined approach do a better job.

Like the other Transition Portal data set, the combined approach is not able to reach the

classification performance of the other two approaches. It is interesting too, to note that the

static detection rate is significantly higher than the moved detection rate.

6.1.4. Summary

Table 6.7 shows a comparison of the best approaches for the three portal types. In regard to

the Standard- and Satellite Portals, it was found that a combination of the classification model

working on the tag-occurrence and tag-event level leads to the best results. This implies that

the two approaches work together very well and are able to support each other’s classifications.

In terms of the false-positive detection rate it is encouraging to see that values well above

the desired 99% can be reached. Using the Satellite Portals leads to a static detection error
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rate of only 0.34% and an overall detection rate of only 0.74%. The Standard Portals have the

best moved detection rates but the worst static and overall detection rates. Furthermore, it is

notable that when using the Transition Portals it is significantly more difficult to detect moved

pallets correctly.

Table 6.7.: Comparison of Portal Type Detection Rates

Portal Type Best Approach Moved Static Overall

Standard Portals Combined 97.49% 98.17% 98.00%

Satellite Portals Combined 96.70% 99.66% 99.26%

Transition Portals Tag-Occurrence 89.62% 99.52% 98.55%

However, this does not mean, that, for example, 2 out of 100 read static pallets are wrongly

billed to the retail store. In Section 1.3.3 different cases of false-positives were identified but

not all of them proved really crucial. For example, if a static pallet located inside the container

is incorrectly classified as moved, it is not that much of a problem, because it is apparently

truly shipped with that loading. In contrast, if a static pallet located in the staging area is

incorrectly classified as moved and it is not going to be shipped with that loading then this is

critical.

Table 6.8 shows how many pallets were monitored at each portal type and how many of these

were actually critical false-positives. It can be seen that in this context the Transition Portals

show the best results. The data in this table can be interpreted as follows: Using Standard

Portals there is 1 critical false-positive per 885 pallets. This ratio improves to 1 per 2955 pallets

using the Satellite Portals and even to 1 per 4615 using the Transition Portals. However, the

quality assurance steps in the workflow operate to ensure that these pallets are not going to be

shipped. For example, after the loading of a container the warehouseman cross-checks the list

of pallets classified as loaded with the list of order pallets. At the latest, any erroneous loading

is detected at this point.
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Table 6.8.: Detection of Critical False-Positives

Portal Type Pallets Critical FP Accuracy

Standard Portals 53,988 61 99.887%

Satellite Portals 14,777 5 99.966%

Transition Portals 13,845 3 99.978%

The overall goal of this thesis was to create a classification model able to minimize the number

of incorrect loadings by maximizing the classification accuracy. It was shown that using the

approaches presented it is possible to reduce the number of erroneous pallet loadings to a ratio

of less than 1 per 4500 pallets. Hence, the target of > 99% was very definitely achieved.

6.2. Evaluation of Performance Reliability

In order to evaluate the performance of the classification models over time the best algorithms,

i.e., the combined approach for Standard- and Satellite Portals and the tag-occurrence approach

for the Transition Portals are applied to the collected data. The performances (abbreviated as

CA) are then averaged over the individual days. In addition, the number of pallets monitored

on each particular day is depicted, thus providing additional information.

Unfortunately this method cannot serve as a completely independent evaluation source, be-

cause part of the data was already used for the actual classification model building. Although

the data was split into a training and a test set several times during the model building phase, it

is not possible to identify the exact sub set of tags that were used as the training set. However,

because no other data is available there is no other choice, but that said it is actually not that

much of a problem, because the constancy of the performance can also be shown using the

known data.

6.2.1. Standard Portals

The classification performances achieved each day at the Standard Portals are shown in Table

6.9 and Figure 6.1. From April 24th, the classification performance was always around 97%.

Before that though, there were two particularly notable drops - to 94% on April 4th, and

March 12th. However, in each case where the performance achieved was quite low the number
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of pallets monitored that day was also significantly below the average of 642 pallets. Bearing

this in mind, the performances on these days could therefore be considered as outliers because

the sample size is too small.
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Figure 6.1.: Performance over Time at Standard Portals
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Table 6.9.: Classification Accuracy per Day at the Standard Portals

Date Tags CA Date Tags CA Date Tags CA

2-Feb 10 100.0% 16-Apr 614 98.0% 28-May 506 98.6%

10-Feb 10 100.0% 17-Apr 683 96.9% 29-May 409 97.1%

2-Mar 102 98.0% 20-Apr 455 96.9% 2-Jun 1269 98.8%

4-Mar 62 93.5% 21-Apr 944 97.8% 3-Jun 903 98.0%

9-Mar 109 99.1% 22-Apr 414 96.1% 4-Jun 664 99.1%

10-Mar 446 98.4% 23-Apr 596 96.0% 5-Jun 403 97.8%

11-Mar 151 94.7% 24-Apr 440 97.7% 8-Jun 583 99.0%

12-Mar 331 91.8% 27-Apr 1149 97.2% 9-Jun 554 98.4%

16-Mar 441 96.6% 28-Apr 1642 98.5% 10-Jun 804 99.0%

17-Mar 412 98.3% 29-Apr 1335 98.2% 12-Jun 386 99.2%

18-Mar 433 97.9% 30-Apr 616 96.9% 15-Jun 851 98.5%

19-Mar 332 95.5% 4-May 1024 98.0% 16-Jun 955 99.1%

20-Mar 648 98.8% 5-May 1241 98.6% 17-Jun 477 98.3%

23-Mar 557 97.7% 6-May 335 97.3% 18-Jun 514 97.9%

24-Mar 870 96.9% 7-May 718 97.6% 19-Jun 573 98.3%

25-Mar 1082 98.6% 8-May 1083 98.5% 22-Jun 1038 98.6%

26-Mar 574 98.3% 11-May 723 97.9% 23-Jun 1229 97.4%

27-Mar 1117 97.5% 12-May 952 96.8% 24-Jun 556 98.7%

30-Mar 377 98.1% 13-May 111 99.1% 25-Jun 589 98.1%

31-Mar 383 95.8% 14-May 443 98.0% 26-Jun 635 98.7%

1-Apr 698 96.6% 15-May 132 100.0% 29-Jun 1581 98.2%

2-Apr 555 97.7% 18-May 548 98.0% 30-Jun 1237 98.4%

3-Apr 495 98.8% 19-May 1016 98.3% 13-Jul 776 98.8%

6-Apr 359 97.8% 20-May 1206 98.8% 14-Jul 281 97.2%

7-Apr 665 97.4% 22-May 696 98.0% 20-Jul 280 98.6%

9-Apr 652 98.2% 25-May 961 98.3% 21-Jul 244 100.0%

14-Apr 557 96.8% 26-May 1284 99.1% 28-Jul 57 100.0%

15-Apr 469 97.2% 27-May 609 98.2% 25-Aug 767 99.5%
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6.2.2. Satellite Portals

The classification performances achieved per day at the Satellite Portals are shown in Table 6.10

and Figure 6.2. Except for two days, March 4th and March 19th, the classification performance

was always at least around 98%. Like the cases with the Standard Portals, on these two days

the number of monitored pallets, at 93 and 112 respectively, was well below the average of

410 pallets. Therefore, these performances too could be considered as outliers because of the

small sample size. Note that the evaluation period is significantly shorter compared with the

Standard Portals because only for this period of time was monitored data available.
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Figure 6.2.: Performance over Time at Satellite Portals

6.2.3. Transition Portals

The classification performances achieved per day at the Transition Portals are shown in Table

6.11 and Figure 6.3. Except for on March 11th, the classification rate was always at least

around 97%. However, in contrast to the other two portals, the number of monitored pallets

that day was significantly above the average of 512 pallets.
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Table 6.10.: Classification Accuracy per Day at the Satellite Portals

Date Tags CA Date Tags CA Date Tags CA

2-Feb 10 100.0% 20-Mar 252 100.0% 7-Apr 846 99.6%

10-Feb 16 100.0% 23-Mar 423 100.0% 9-Apr 273 99.6%

2-Mar 99 98.0% 24-Mar 713 99.7% 14-Apr 263 98.9%

4-Mar 93 95.7% 25-Mar 402 100.0% 15-Apr 178 97.8%

9-Mar 270 99.6% 26-Mar 496 99.8% 17-Apr 349 100.0%

10-Mar 965 99.4% 27-Mar 556 98.7% 20-Apr 756 99.1%

11-Mar 317 97.8% 30-Mar 452 99.8% 21-Apr 1400 99.3%

12-Mar 186 98.4% 31-Mar 386 99.5% 22-Apr 498 99.8%

16-Mar 475 98.1% 1-Apr 518 99.2% 23-Apr 394 98.7%

17-Mar 674 99.3% 2-Apr 331 99.7% 24-Apr 236 99.2%

18-Mar 143 99.3% 3-Apr 411 99.3% 27-Apr 465 99.1%

19-Mar 112 94.6% 6-Apr 347 99.7% 28-Apr 472 99.4%

Table 6.11.: Classification Accuracy per Day at the Transition Portals

Date Tags CA Date Tags CA Date Tags CA

05-Mar-09 668 98.2% 19-Mar-09 173 97.7% 02-Apr-09 526 99.6%

09-Mar-09 404 96.5% 20-Mar-09 748 99.2% 03-Apr-09 134 97.8%

10-Mar-09 737 96.1% 23-Mar-09 222 98.2% 07-Apr-09 200 100.0%

11-Mar-09 794 97.0% 24-Mar-09 279 97.1% 09-Apr-09 287 99.0%

12-Mar-09 874 98.1% 25-Mar-09 1052 99.8% 14-Apr-09 203 100.0%

13-Mar-09 771 98.6% 26-Mar-09 377 98.7% 15-Apr-09 410 98.8%

16-Mar-09 215 99.5% 27-Mar-09 1010 99.3% 16-Apr-09 365 99.2%

17-Mar-09 1424 98.2% 31-Mar-09 561 99.1% 17-Apr-09 134 98.5%

18-Mar-09 140 100.0% 01-Apr-09 513 99.4% 22-Apr-09 624 99.2%
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Figure 6.3.: Performance over Time at Transition Portals

6.2.4. Summary

It can be seen that implementing the approaches presented here on the different portal types

leads in each case to a reliable and robust classification performance over time. In only a very

few cases did the performances show a notable drop of more than 2 or 3 percentage points.

However, in almost all of these cases the sample size collected on these days was very small so

they can therefore be considered as outliers. Table 6.12 shows the averages and the standard

deviations of the daily classification performances achieved at the individual portal types.

Table 6.12.: Classification Performances over Time

Portal Type Average CA Std. Dev of CA

Standard Portals 97.30% 1.30%

Satellite Portals 99.06% 1.14%

Transition Portals 98.62% 1.05%

6.3. Evaluation of Business Objectives

In Section 3.1.2 the business objectives were defined and afterwards mapped against several

data mining goals. These will be evaluated in the following.
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6.3.1. Knowledge Generation

Because the problem of false-positive tag reads exists in many RFID related processes, METRO

representatives requested that the classification model allow them to easily understand why and

how it decides the way it does. It was for this reason in particular that decision trees were

chosen in favor of other classification models, as because decision trees can easily be transformed

into a visual representation it is particularly easy to track which decisions (i.e., attribute tests)

lead to the final classification of a tag as being a false-positive read or not. For example, if at

the root of the tree a test on the maximum RSSI value of a tag is performed, then it can be

concluded that this characteristic plays a major role in the classification procedure.

The following sections discuss some of the major insights derived from the results of this

study.

6.3.1.1. Applicability to other Processes

Considering the achieved classification rates that could be reached it soon became apparent

that the low-level reader data constitutes a valuable source of information. Because the class of

false-positive reads was mapped to the class of pallets that did not move through a portal this

means that the approaches presented here are particularly useful for the detection of movement

of RFID tags. Identifying moving or non moving tags is naturally an important issue in various

processes, especially similar processes such as an incoming goods process or the identification

of pallets passing through some check point. For example an RFID portal to register goods

moving from the back- to the front of a store. In the following section some other processes

are presented where the framework used for this study could be successfully utilized. Note that

for example in the pallet retrieval scenario, the pallet that is static relative to the RFID reader

installed on the forklift is the one of interest.
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Electronic Article Surveillance In this scenario a shoplifter carrying stolen RFID tagged prod-

ucts is leaving a store through a so-called EAS Gate. The task here is to distinguish be-

tween the stolen objects moving through the gate and several “static” tags - for example

those present in the window display near the store exit.

Automatic Supermarket Check-Out In this scenario customers move through an RFID check-

out portal so that all RFID tagged products are automatically detected and billed to them.

These products need to be distinguished from products near this portal, for example items

dropped by preceding customers or present in the window display.

Pallet Retrieval A common process in distribution centers is the retrieval of pallets from high-

rack storage areas. In this context an RFID reader along with the corresponding antennas

is usually attached directly to the fork lift. In contrast to the other applications presented

above, in this case only the retrieved pallet is “static” and all others appear to move while

the warehouseman navigates the forklift through the distribution center.

Replenishment: Backroom to Shelf In this scenario it is necessary to detect the items leaving

the backroom and distinguish them both from the items left in there and the items already

present in the sales area.

Pick-by-Voice RFID technology can also improve the picking process by automatically de-

tecting the selected articles. In this scenario it is important to automatically detect the

retrieved items in order to prevent incorrect removals.

Because of the similarities between the above scenarios and the scenario in our METRO

group study, it seems reasonable to assume that the approaches presented here can also be

applied to these scenarios as well.

6.3.1.2. Use of Alternative Antenna Configurations

There were three different portal types in use in the distribution center. The Satellite Portals

and Transition Portals both used an additional reader with four more antennas. Because both

advancements lead to improved classification results it is reasonable to assume that the number

and direction of installed antennas are a useful enhancement in the scenario. This insight might

also be helpful in some of the alternative scenarios presented above.
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6.3.1.3. Examination of Low-Level Reader Data

Most of the approaches presented to detect false-positives in Chapter 2 make use only of the

number of tag-events read during a predefined time window and entirely ignore the signal

strength. However, it was found that the received signal strength indication (RSSI) is the most

important movement indicator. It can be observed for example in Figure 5.4 how well the

maximum RSSI value measured during a gathering-cycle can be used to distinguish between

moved and static tags.

6.3.2. Avoidance of additional Costs

The underlying idea of all the approaches here is to make use only of the data generated by

the reader anyway. Consequently, no additional investments in physical hardware are required

if one of these classification approaches is adopted at an existing or planned RFID installation.

However, if monetary savings are not the number one priority then it has been shown that

additional hardware - in terms of an additional reader - can improve the classification perfor-

mance even further. However, in addition to any hardware costs it is also necessary to spend

some time implementing and parameterizing whichever approach is chosen.

6.4. Deployment

The first experiments at METRO Group using the low-level reader data to detect false-positive

RFID tag reads go back to mid-2008, i.e. one year prior to the data collection considered

in this thesis. The first ever, though very primitive, classification model in productive use

was implemented in the distribution center in Unna, Germany, also in the middle of 2008.

Around November 2008, it was succeeded by the first more advanced algorithm that involved

artificial attribute generation and decision trees. Since then, the quality of the models has been

constantly improved by using ever more advanced techniques such as the time-series analysis

approach.

The classification model currently in use is called TK − 8B (i.e., the 8th algorithm, revision

B) and has been in productive use since the middle of 2009 deciding the operative classification

of pallets leaving the central distribution center of the METRO Group in Unna, Germany, all

without undergoing any changes. It has been generated completely based on the attributes and

techniques presented in this thesis and is a result of the underlying framework.

Although it was shown that using Satellite- or Transition Portal gives the best classification

results it has been decided to use only Standard Portals in the future. Two major reasons were

148



given for this decision. First of all, Satellite- and Transition Portals require the installation

of two readers instead of one single reader, and additionally a total of eight instead of only

four antennas. Because readers and antennas make up the largest part of the total cost of

installing the technology, the price of these two types of portals is almost twice as high as that

of the Standard Portals. Furthermore, more hardware means more ongoing maintenance re-

quirements, which in turn means even more costs. The second reason was that the classification

rates achieved with the Standard Portals already significantly exceeded the overall target and

thus the additional improvement did not justify the additional costs.

As with most IT installations, whether they be on a hardware or a software basis, it still

requires the acceptance of the people working with it. If this support is missing, then any

solution, no matter how good it is, is going to fail. The people working with the solution on

an operative basis are the warehousemen who actually load the pallets into the containers. If

they had felt that the RFID solution had significant draw backs compared with the previously

used bar-code solution, they would have refused to give their cooperation. However, this was

not the case and the warehousemen actively participated in the implementation of the RFID

technology and also in our study, even during the initial evaluation phase.
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7. Summary and Outlook

7.1. Summary

7.1.1. Background

Currently, radio frequency identification (RFID) technology has been implemented in a variety

of different applications and in particular in the field of supply chain management and logistics.

The ability to identify hundreds of RFID tagged objects at the same time and without the need

for a line-of-sight is only one of the many advantages over the traditional bar-code. However,

along with the enhanced functionality come new and previously unknown difficulties.

The ability to detect multiple RFID tags within the range of the antennas is generally con-

sidered desirable, but in many cases not all of the scanned transponders are really of interest.

For example, when trying to automatically register incoming or outgoing RFID tagged pallets

in a distribution center, not only are these detected but also additional pallets that are in range

only by accident. The latter are denoted as false-positive RFID tag reads and they can be the

result of two different circumstances. In the first case, the range of the radio waves used to

scan for tags is unexpectedly extended, for example due to reflections on metal surfaces, and

any pallets are detected that were actually assumed to be out of the antennas’ coverage. In the

second case, the pallets are indeed within the range of the antennas but may be considered as

unwanted reads, for example, because they were buffered near the dock door by a warehouse-

man. In either case the false-positive tag reads need to be detected and distinguished from the

pallets that were really coming in or going out.

Few approaches were presented in the literature to deal with this problem and of those that

were none of them were well founded. Either the approaches made unrealistic assumptions

because they made no reference to a real world scenario, or there was no meaningful data

available to validate any their propositions. In most cases, the idea was to simply consider

the number of tag detections during a predefined time window to distinguish between tags of

interest and false-positives. However, in conjunction with any individual tag detection there is

also additional data generated by the reader, this is known as low-level reader data. Besides a
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timestamp and the identifier of the receiving antenna, the received signal strength indication

(RSSI) as a measure of “how loud the tag was read” is also available. Based on this insight, it

was the aim of this thesis to answer the question of how this low-level reader data can be used

to detect false-positive RFID tag reads.

7.1.2. Business Objectives

The research methodology, as well as the structure of this thesis, was mainly organized according

to the well known data mining process model known as CRISP-DM. At first the unit of analysis,

i.e., the RFID enabled outgoing goods process in the METRO Group central distribution center

in Unna, Germany was described in detail. The unit of analysis, i.e., the RFID enabled outgoing

goods process in the METRO Group central distribution center in Unna, Germany was first

described in detail before the business objectives were identified in order to more exactly define

the problem and the characteristics of the requested solution. The occurrence of false-positive

tag reads at an outgoing goods portal in a distribution center can possibly lead to incorrectly

billed pallets because they have been erroneously assumed to be loaded onto a container heading

to a customer. Consequently, the minimization of false-positive reads was defined as the overall

target, with the wider aim being to minimize the number of incorrectly billed pallets. However,

the problem described here is not limited to the scenario under consideration, it can also emerge

in various similar processes along a retailer’s supply chain. Accordingly, it was required that

the solution should lead to the generation of fundamental insights and knowledge that would

allow potential application to other processes suffering from similar difficulties.

In data mining or machine learning terminology, the solution to be created is called a clas-

sification model because its task is to classify pallets as either moved if they were loaded or

static if they were false-positive reads. Therefore, the business objectives have been mapped

to measurable data mining goals which will ultimately be used to evaluate the quality and the

success or failure of the developed classification model. Consequently, minimization of false-

positive reads was mapped to a so-called classification accuracy of at least 99%. This means

that the model should not classify more than 1 per 100 pallets incorrectly. It should be noted

though that the misclassification of a pallet does not automatically lead to an incorrectly billed

pallet; this is because the responsible warehouseman is given immediate visual feedback about

the detected pallets and is therefore able to immediately respond to any contradictions.

The business objective to generate fundamental insights and knowledge was interpreted in

the following way: classification models can be separated into two disjunctive classes, some

using black-box models and some others using white-box models. The difference between these
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is that a black-box model is normally very difficult if not impossible for a human being to

understand. In contrast, white-box models are usually very transparent and allow a manual

reconstruction of the decisions that lead to the final classification of a pallet. Based on this

requirement and due to other favorable characteristics, decision trees were identified as the

classification model of choice.

7.1.3. Data Basis

The quality of the classification model heavily depends upon two different factors: firstly, it

must be a good representative of the real-world environment; and secondly, it must be possible

to extract meaningful characteristics typical to both moved and static pallets.

The data used as the basis for the classification model was collected over a period of several

months in the central distribution center of the METRO Group in Unna, Germany. This kind

of real-world data allows for greater insights than any other dataset possibly acquired under

lab conditions or created by computer simulations as it was presented in the literature by other

researchers. 2,840,571 individual RFID tag detections were monitored by students, representing

92,857 pallets in total. The students furthermore labeled the individual pallet data as belonging

to either a moved or a static pallet, depending on whether it was being loaded or not in the

moment it was observed.

Three different RFID portal types were used in the distribution center to register outgoing

pallets. Standard Portals have two antennas to the left and to the right aligned towards each

other so a pallet passing trough is scanned from both sides at the same time. Satellite Portals

and Transition Portals are more advanced versions as they each have an additional reader with

four more antennas and an alternative antenna configuration. The data was mainly collected at

the Standard Portals because they are the most commonly used. However, the data collected

at the other two portal types was also sufficient enough to be used as a training basis.

The collected data at the portals was mainly of some numerical type but additional nominal

characteristics were derived as well. An example of numerical data is the received signal strength

indication, measured in dBm, that also constitutes the most important information source.

Examples of nominal characteristics include information about the order in which tags were

detected or about which RFID reader antennas detected the tag. Because of the inexhaustible

possibilities available in attempting to extract meaningful characteristics describing both moved

and static pallets, a major part of this thesis was spent on identifying and evaluating these so

called attributes.
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7.1.4. Classification Model Building

An initial evaluation of the available data led to the conclusion that two different model building

approaches are reasonable. Although they significantly differ in the level of data granularity

used and the way they describe moved and static pallets, it is however possible to treat them

both simply as a preprocessing step before they are ultimately used as input into the decision

tree learner. The general idea behind this procedure was to create a common ground such that

an additional third approach, able to make use of both the approaches, could be generated.

The first approach presented in this thesis was called the tag-occurrence level approach. Based

on the data collected during a 10 second time window around the loading of a pallet, meaningful

attributes were derived by calculating various aggregations of the low-level reader data. For

example, a pallet can be described by the maximum, minimum, or average RSSI value observed

during that period, the number of answers it gave to the reader or the time since the beginning

of the loading that has passed before it was first scanned. These attributes are then used as

input to a decision tree to generate rules similar to

“If the maximum signal strength of a tag is less than X and it has been detected

less than Y times then it is a false-positive else it is a moved pallet.”

The second approach was called the tag-event level approach. Based on the same data col-

lected during the 10-second time window around the loading of a pallet the development of the

signal strength during that period was evaluated. The insight that the received signal strength

varies depending on the distance between RFID tag and antennas was used to discriminate

between moved and static pallets. The idea next was to derive time-series representing the

typical development of RSSI values for moved and static pallets over time. These could then

be used to generate rules similar to

“If the RSSI values time-series of a pallet is more similar to the typical time-series

of a static pallet then it is a false-positive else it is a moved pallet.”

The resulting rules and attributes derived using the two approaches were then unified in a

third approach. Finally, a fourth approach called the exclusive approach was proposed, although

it cannot be used in the scenario of an RFID enabled outgoing goods process because it assumes

that there is always exactly one single RFID tag moving through the portal, no more and no

less. However, it is highly conceivable that this approach will perform even better in other

processes where that assumption does hold true.
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7.1.5. Evaluation

In the evaluation chapter it was shown that the classification models significantly exceeded any

initial expectations. It can be seen that the idea of using low-level reader information for the

detection of false-positive RFID tag reads was a good one. Tag-occurrence level and tag-event

level approaches were found to be of comparable quality with their respective strengths and

weaknesses because the unification of both approaches led to even better results.

Implementation of the classification models at the different portal types showed that Satellite

Portals and Transition Portals outperformed the detection rates achieved at the Standard

Portals. The number of pallets that could possibly be incorrectly billed now only ranges from

1 in 900 pallets up to only 1 in 4500 pallets.

Although the advanced portal types yielded the best results, METRO Group made a decision

in favor of the Standard Portals, especially since these still exceeded the required detection rates

to the point where any further improvement in quality did not justify doubling the investments

by installing twice as many readers and antennas.

7.2. Outlook

Both practitioners and researchers in the field of RFID were identified as the intended audience

for this piece of work. In the conclusion of this thesis possible implications for both groups are

discussed.

7.2.1. Implications for the Researcher

From a researcher’s perspective it will be interesting to see how far the detection rates can

be pushed. There are currently a great number of machine learning techniques available (e.g.,

Neural Networks, Support Vector Machines) that have been proven to lead to better classifica-

tions than decision trees can make, and in many different scenarios too. These could be applied

to the available data and the results then compared to those presented in this thesis.

Every classification model relies on the quality of the attributes to describe the objects under

consideration. Although a large number of attributes were identified and evaluated in this

thesis it is worth spending time and effort to explore even more attributes that might help to

distinguish between moved and static tags even more effectively.

Furthermore, there is a lot of research suggestive of the value of improving the time-series

analysis approach. The application of cluster analysis to identify different sub groups of moved

and static tags was a first step, but it is the opinion of the author that it is very likely that

some kind of sub-sequence matching will lead to best results in this context.
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A drawback of classification models is that they require some kind of class labeled training

data. Because a large example data set was available for our framework this was not a problem.

However, it seems evident that the insights of the thesis could also be used for the generation of

a self-learning and / or self-adapting classification algorithm. For example, such an algorithm

would be able to automatically recognize process changes like new RFID tags with improved

readability and to adapt itself to them. However, the research issues associated with these

concepts are beyond the scope of this thesis.

7.2.2. Implications for the Practitioner

From a practitioner’s perspective it will be interesting to evaluate the application of the frame-

work to other processes. As it was stated in the beginning, the problem of false-positive tag

reads exists in many different domains involving radio frequency identification technology. It

is expected that the framework presented in this thesis can be successfully applied to these

domains and in particular to any processes where it is crucial to detect the movement of RFID

tags. Several examples of such processes were briefly described in the thesis.

Currently, it is being evaluated to what extent the framework and the corresponding knowl-

edge can be used in the scenario of pallet retrieval from high rack storage areas. Although

the scenario is a little different, initial tests were promising. In this case, an RFID reader is

installed on the fork lift and it is the pallet removed from the storage area that needs to be

identified. As soon as the forklift moves, the retrieved pallet becomes static relative to the

reader and any other pallets appear to move relative to the reader. Consequently, in this case

the moving pallets are considered to be false-positives.

The next step is to evaluate the application of the framework in an electronic article surveil-

lance process. A research scenario under laboratory conditions has already been set up and

initial tests in this direction are going to be performed in the medium-term.
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A. Glossary

Antennas, DC A group of antennas directed towards the distribution center. Installed at the

Satellite- and the Transition Portals.

Antennas, Main A group of antennas used to detect anything passing through a portal. In-

stalled at the Standard- and the Satellite Portals.

Antennas, Truck A group of antennas directed towards the truck. Installed at the Satellite-

and Transition Portals.

Attribute A characteristic to describe an object (e.g., height, depth, weight).

Attribute, Antenna One of the Domain Attribute types. A characteristic that describes a

pallet on the basis of the respective reader antennas where the individual tag detections

took place. Example: Number of detections by antenna #1.

Attribute, Artificial Attributes derived from the Domain Attributes by applying a sequence

of unary and binary mathematical operators to them. In contrast to their latter they do

not have an intuitive semantic.

Attribute, Domain A group of attributes (i.e., RSSI-, SinceStart and Antenna Attributes)

derived from the domain knowledge of people working in the scenario under consideration

that have an intuitive semantic. Example: Maximum signal strength a tag has been

detected with.

Attribute, Logical A characteristic to describe a tag read by a portal with more than one

reader. Example: where a tag was read by reader #1 before it was read by reader #2.

Attribute, RSSI One of the Domain Attribute types. A characteristic used to describe a pallet

on the basis of the signal strength the corresponding tag was read with.

Attribute, SinceStart One of the Domain Attribute types. A characteristic that describes a

pallet on the basis of the timestamps of the individual tag detections. Example: Time

that has passed before the first tag detection.
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Attribute, Time-Series A characteristic that describes a tag on the basis of the development

of RSSI values over the period of a gathering-cycle. Example: Degree of similarity to a

typical moved signal strength development.

Attribute, TO-Count An attribute indicating the number of times a tag has been seen in

previous gathering-cycles. If the attribute value is greater than 1 then it is known that

the tag has been seen before.

C4.5 A decision tree learning algorithm.

CART Another decision tree learning algorithm.

Class Precision A measure of how confident a classification is, i.e., the ratio of all samples

classified as a specific class that were correctly classified.

Class Recall A measure used to determine the ratio of tag of a specific class that were classified

correctly. It is often also called Class Detection Rate.

Classification Accuracy A measure often simply called Accuracy, that corresponds to the ratio

of correctly classified samples in a data set.

Completeness A measure of generality, i.e., how many of the samples of a specific class are

covered by that rule and are classified correctly.

Confidence A measure of how confident a rule is, i.e., how many of the samples covered by

that rule are classified correctly.

CRISP-DM The Cross Industry Standard Process for Data Mining is commonly used to struc-

ture a data mining project.

Decision Tree A machine learning technique to classify objects based on their describing at-

tributes.

Electronic Product Code (EPC) A coding scheme to uniquely identify products.

False-Negative RFID Tag Read An RFID tag that has not been read by an RFID reader

device although it was present within the range of the reader antennas.

False-Positive RFID Tag Read An RFID tag that has been read unexpectedly or undesirably

by an RFID reader device.
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Gathering-Cycle Denomination of the time period of a pallet loading where the low-level reader

data is collected. A gathering-cycle is usually less than 10 seconds long.

Knowledge Discovery The process of deriving knowledge from data.

Neighbor, Furthest The object in a data set that is least similar to a query object.

Neighbor, Nearest The object in a data set that is most similar to a query object.

Pallet, Mob-Ware A shipping unit consisting of furniture.

Pallet, Stacked At least two low-height pallets that are stacked on top of each other. Note

that each of the pallets still has its own RFID tag attached.

Portal, Satellite An RFID portal similar to the Standard Portal, but with an additional reader.

In addition to the 4 Main Antennas, 2 more are directed towards the distribution center

(DC Antennas) and 2 more are directed towards the truck (Truck Antennas).

Portal, Standard An RFID portal consisting of 4 antennas, called Main Antennas, intended

to detect any tag passing through.

Portal, Transition An RFID portal consisting of 2 different readers. The first reader has 4

antennas directed towards the distribution center (DC Antennas) and the latter has 4

antennas directed towards the truck (Truck Antennas).

Received Signal Strength Indication (RSSI) This denotes the power of a tag’s radio signal

measured in dBm: this can intuitively be interpreted as how “loud” the tag was heard

by the antennas.

SinceStart A measurement of how many microseconds passed since the time the pallet loading

at that portal started and the time the tag was read.

Support A measure of generality, i.e., how many of the total number of samples are covered

by a rule and are classified correctly.

Tag-Event A single tag detection during a gathering-cycle mainly represented by the measured

signal strength, a timestamp and the identifier of the involved antenna.

Tag-Occurrence The entirety of all the tag-events associated with a specific EPC during a

single gathering-cycle.
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B. Monitored Data per Portal

Table B.1.: Monitored Pallets at the Satellite Portals

Portal Moved Tags Static Tags Total Tags

Quantity [%] Quantity [%] Quantity [%] of all

Portal 23 464 11.4% 3,605 88.6% 4,069 27.5%

Portal 24 519 20.5% 2,009 79.5% 2,528 17.1%

Portal 25 509 10.4% 4,366 89.6% 4,875 33.0%

Portal 26 479 14.5% 2,826 85.5% 3,305 22.4%

Total 1,971 13.3% 12,806 86.7% 14,777 100.0%

Table B.2.: Monitored Pallets at the Transition Portals

Portal Moved Tags Static Tags Total Tags

Quantity [%] Quantity [%] Quantity [%] of all

Portal 1 236 12.9% 1,591 87.1% 1,827 13.2%

Portal 2 173 16.6% 869 83.4% 1,042 7.5%

Portal 3 202 10.3% 1,762 89.7% 1,964 14.2%

Portal 4 219 9.7% 2,037 90.3% 2,256 16.3%

Portal 5 93 7.2% 1,199 92.8% 1,292 9.3%

Portal 6 131 7.4% 1,635 92.6% 1,766 12.8%

Portal 7 141 8.0% 1,611 92.0% 1,752 12.7%

Portal 8 163 8.4% 1,783 91.6% 1,946 14.1%

Total 1,358 9.8% 12,487 90.2% 13,845 100.0%
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Table B.3.: Monitored Pallets at the Standard Portals (Part 1)

Portal Moved Tags Static Tags Total Tags

Quantity [%] Quantity [%] Quantity [%] of all

Portal 9 226 46.4% 261 53.6% 487 0.9%

Portal 10 266 26.4% 740 73.6% 1,006 1.9%

Portal 11 195 39.2% 303 60.8% 498 0.9%

Portal 12 319 27.7% 831 72.3% 1,150 2.1%

Portal 13 306 26.0% 870 74.0% 1,176 2.2%

Portal 14 314 36.5% 546 63.5% 860 1.6%

Portal 15 313 28.0% 803 72.0% 1,116 2.1%

Portal 16 418 21.6% 1,521 78.4% 1,939 3.6%

Portal 17 509 44.8% 628 55.2% 1,137 2.1%

Portal 18 500 34.1% 968 65.9% 1,468 2.7%

Portal 19 549 21.3% 2,026 78.7% 2,575 4.8%

Portal 20 662 20.3% 2,592 79.7% 3,254 6.0%

Portal 21 696 13.5% 4,458 86.5% 5,154 9.5%

Portal 23 964 19.5% 3,984 80.5% 4,948 9.2%

Portal 24 972 22.8% 3,283 77.2% 4,255 7.9%

Portal 25 932 31.1% 2,065 68.9% 2,997 5.6%

Portal 26 1,002 25.0% 3,008 75.0% 4,010 7.4%

Portal 27 776 32.5% 1,613 67.5% 2,389 4.4%

Total (Part 1) 9,919 24.5% 30,500 75.5% 40,419 74.9%
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Table B.4.: Monitored Pallets at the Standard Portals (Part 2)

Portal Moved Tags Static Tags Total Tags

Quantity [%] Quantity [%] Quantity [%] of all

Portal 28 734 21.9% 2,625 78.1% 3,359 6.2%

Portal 29 485 29.6% 1,151 70.4% 1,636 3.0%

Portal 30 604 27.7% 1,574 72.3% 2,178 4.0%

Portal 31 428 21.0% 1,607 79.0% 2,035 3.8%

Portal 32 315 26.1% 892 73.9% 1,207 2.2%

Portal 33 359 21.3% 1,324 78.7% 1,683 3.1%

Portal 34 160 20.0% 640 80.0% 800 1.5%

Portal 35 52 19.4% 216 80.6% 268 0.5%

Portal 58 20 48.8% 21 51.2% 41 0.1%

Portal 59 16 42.1% 22 57.9% 38 0.1%

Portal 61 19 100.0% 0 0.0% 19 0.0%

Portal 64 4 66.7% 2 33.3% 6 0.0%

Portal 65 12 85.7% 2 14.3% 14 0.0%

Portal 66 16 32.7% 33 67.3% 49 0.1%

Portal 71 28 47.5% 31 52.5% 59 0.1%

Portal 72 39 33.3% 78 66.7% 117 0.2%

Portal 75 19 73.1% 7 26.9% 26 0.0%

Portal 76 16 47.1% 18 52.9% 34 0.1%

Total (Part 1) 9,919 24.5% 30,500 75.5% 40,419 74.9%

Total (Part 2) 3,326 24.5% 10,243 75.5% 13,569 25.1%

Total 13,245 24.5% 40,743 75.5% 53,988 100.0%
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C. Time Series Attribute Values

Table C.1.: Detailed Time-Series Attribute Values (STD COMPLETE Data Set)

Attribute Moved Tags Static Tags

Min Max Avg SD Min Max Avg SD

DM 1.1 6.7 3.5 1.2 1.1 11.2 5.2 2.4

DM,1 0.9 7.3 3.5 1.3 0.9 9.9 4.3 2.1

DM,2 1.1 5.7 2.8 0.9 1.4 11.7 5.5 2.5

DM,3 1.2 8.7 4.5 1.6 0.8 8.5 3.4 1.8

DM,4 1.4 6.6 3.7 1.1 1.6 12.4 6.3 2.6

DM,5 1.1 7.2 3.7 1.2 2.3 14.8 8.3 2.8

DS 1.5 12.3 6.7 2.2 0.3 6.5 2.0 1.3

DS,1 1.3 10.9 5.7 2.0 0.3 7.4 2.7 1.5

DS,2 2.2 14.7 8.2 2.5 0.2 7.5 2.1 1.6

DM,Min 0.7 4.7 2.6 0.9 0.7 8.5 3.3 1.8

DM,Max 2.5 9.2 5.0 1.4 2.6 14.8 8.3 2.8

DM,Mean 1.6 6.4 3.6 1.0 1.6 11.4 5.5 2.3

DM,StDev 0.2 1.8 0.8 0.4 0.4 2.4 1.6 0.4

DM,CoV 0.068 0.547 0.231 0.099 0.151 0.582 0.327 0.101

DS,Min 0.9 10.9 5.7 2.1 0.2 4.9 1.3 1.0

DS,Max 2.7 14.7 8.2 2.5 1.5 8.2 3.4 1.5

DS,Mean 1.8 12.6 6.8 2.3 1.1 6.5 2.3 1.2

DS,StDev 0.3 1.8 1.0 0.3 0.2 1.7 0.9 0.4

DS,CoV 0.074 0.488 0.164 0.071 0.085 0.754 0.420 0.175
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Table C.2.: Detailed Time-Series Attribute Values (SAT MAIN ONLY Data Set)

Attribute Moved Tags Static Tags

Min Max Avg SD Min Max Avg SD

DM 1.2 7.3 3.9 1.3 1.4 10.0 5.3 2.2

DM,1 1.8 6.8 4.0 1.1 2.0 11.3 6.5 2.4

DM,2 1.3 6.3 3.3 1.0 2.7 13.7 8.3 2.7

DM,3 0.9 8.9 4.4 1.7 0.8 8.2 4.0 1.8

DM,4 1.2 9.2 4.6 1.8 0.8 7.0 3.2 1.5

DM,5 1.3 5.5 2.9 0.9 1.6 10.9 5.8 2.4

DS 1.8 13.0 6.9 2.5 0.3 5.0 1.7 1.0

DS,1 1.5 12.3 6.3 2.3 0.3 5.6 2.1 1.2

DS,2 2.5 14.6 8.1 2.6 0.2 5.9 1.7 1.2

DM,Min 0.8 4.5 2.6 0.8 0.7 7.0 3.1 1.5

DM,Max 2.7 9.6 5.2 1.5 2.9 13.7 8.3 2.7

DM,Mean 2.0 6.9 3.9 1.1 1.8 10.2 5.5 2.1

DM,StDev 0.2 2.3 0.9 0.5 0.5 2.5 1.7 0.5

DM,CoV 0.070 0.520 0.239 0.101 0.182 0.553 0.329 0.084

DS,Min 1.5 12.3 6.3 2.4 0.2 3.8 1.1 0.8

DS,Max 2.5 14.6 8.1 2.6 1.1 6.2 2.7 1.1

DS,Mean 1.9 13.2 7.1 2.5 0.8 5.0 1.9 0.9

DS,StDev 0.3 1.3 0.8 0.2 0.1 1.3 0.7 0.3

DS,CoV 0.050 0.298 0.116 0.049 0.061 0.775 0.385 0.178
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Table C.3.: Detailed Time-Series Attribute Values (SAT MAIN TRUCK Data Set)

Attribute Moved Tags Static Tags

Min Max Avg SD Min Max Avg SD

DISTS,Main 1.5 12.9 6.9 2.4 0.2 7.1 2.1 1.5

DISTS,Truck 0.9 9.4 4.5 2.0 0.5 7.6 2.8 1.8

DISTM,Main 1.2 6.6 3.7 1.2 1.3 11.0 5.8 2.4

DISTM,Truck 0.8 7.2 3.0 1.3 0.6 9.2 3.2 2.2

DM,Min 0.7 5.1 2.6 0.9 0.6 8.1 2.9 1.9

DM,Max 1.8 7.8 4.0 1.2 1.6 11.0 6.1 2.3

DM,Mean 1.5 6.2 3.3 0.9 1.3 8.8 4.5 1.8

DM,StDev 0.0 2.5 0.7 0.6 0.0 4.4 1.6 1.1

DM,CoV 0.005 0.653 0.219 0.157 0.006 0.860 0.375 0.246

DS,Min 0.7 8.6 4.2 1.8 0.2 4.6 1.6 1.0

DS,Max 2.6 12.9 7.2 2.2 0.8 8.3 3.3 1.7

DS,Mean 2.1 9.7 5.7 1.7 0.6 6.4 2.4 1.2

DS,StDev 0.0 5.0 1.5 1.1 0.0 3.1 0.8 0.7

DS,CoV 0.008 0.790 0.273 0.187 0.006 0.863 0.340 0.226
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Table C.4.: Detailed Time-Series Attribute Values (TRA BOTH Data Set)

Attribute Moved Tags Static Tags

Min Max Avg SD Min Max Avg SD

DS,DC 1.0 11.3 6.4 2.5 0.4 8.5 2.8 1.8

DS,Truck 0.8 9.2 4.9 1.9 0.4 8.4 3.3 1.9

DM,DC 1.1 7.1 3.8 1.3 1.5 11.7 6.3 2.6

DM,Truck 1.0 7.2 3.4 1.2 0.7 11.5 4.1 2.8

DM,Min 0.8 5.3 3.0 1.0 0.7 9.8 3.4 2.0

DM,Max 1.7 8.5 4.2 1.2 2.1 12.0 7.0 2.5

DM,Mean 1.5 6.3 3.6 1.0 1.8 10.3 5.2 1.9

DM,StDev 0.0 2.5 0.6 0.5 0.0 4.7 1.8 1.2

DM,CoV 0.004 0.651 0.173 0.143 0.007 0.829 0.361 0.224

DS,Min 0.6 8.7 4.6 1.9 0.4 6.2 2.1 1.2

DS,Max 2.1 11.3 6.7 2.3 1.1 9.0 4.0 1.9

DS,Mean 1.6 9.5 5.7 1.9 0.9 7.2 3.1 1.4

DS,StDev 0.0 3.6 1.1 0.8 0.0 3.3 1.0 0.8

DS,CoV 0.003 0.755 0.206 0.164 0.007 0.832 0.326 0.215
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